agsamantha/node_modules/@langchain/community/dist/vectorstores/faiss.d.ts

128 lines
5.6 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import type { IndexFlatL2 } from "faiss-node";
import type { NameRegistry, Parser } from "pickleparser";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { SaveableVectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
import { SynchronousInMemoryDocstore } from "../stores/doc/in_memory.js";
/**
* Interface for the arguments required to initialize a FaissStore
* instance.
*/
export interface FaissLibArgs {
docstore?: SynchronousInMemoryDocstore;
index?: IndexFlatL2;
mapping?: Record<number, string>;
}
/**
* A class that wraps the FAISS (Facebook AI Similarity Search) vector
* database for efficient similarity search and clustering of dense
* vectors.
*/
export declare class FaissStore extends SaveableVectorStore {
_index?: IndexFlatL2;
_mapping: Record<number, string>;
docstore: SynchronousInMemoryDocstore;
args: FaissLibArgs;
_vectorstoreType(): string;
getMapping(): Record<number, string>;
getDocstore(): SynchronousInMemoryDocstore;
constructor(embeddings: EmbeddingsInterface, args: FaissLibArgs);
/**
* Adds an array of Document objects to the store.
* @param documents An array of Document objects.
* @returns A Promise that resolves when the documents have been added.
*/
addDocuments(documents: Document[], options?: {
ids?: string[];
}): Promise<string[]>;
get index(): IndexFlatL2;
private set index(value);
/**
* Adds an array of vectors and their corresponding Document objects to
* the store.
* @param vectors An array of vectors.
* @param documents An array of Document objects corresponding to the vectors.
* @returns A Promise that resolves with an array of document IDs when the vectors and documents have been added.
*/
addVectors(vectors: number[][], documents: Document[], options?: {
ids?: string[];
}): Promise<string[]>;
/**
* Performs a similarity search in the vector store using a query vector
* and returns the top k results along with their scores.
* @param query A query vector.
* @param k The number of top results to return.
* @returns A Promise that resolves with an array of tuples, each containing a Document and its corresponding score.
*/
similaritySearchVectorWithScore(query: number[], k: number): Promise<[Document<Record<string, any>>, number][]>;
/**
* Saves the current state of the FaissStore to a specified directory.
* @param directory The directory to save the state to.
* @returns A Promise that resolves when the state has been saved.
*/
save(directory: string): Promise<void>;
/**
* Method to delete documents.
* @param params Object containing the IDs of the documents to delete.
* @returns A promise that resolves when the deletion is complete.
*/
delete(params: {
ids: string[];
}): Promise<void>;
/**
* Merges the current FaissStore with another FaissStore.
* @param targetIndex The FaissStore to merge with.
* @returns A Promise that resolves with an array of document IDs when the merge is complete.
*/
mergeFrom(targetIndex: FaissStore): Promise<string[]>;
/**
* Loads a FaissStore from a specified directory.
* @param directory The directory to load the FaissStore from.
* @param embeddings An Embeddings object.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static load(directory: string, embeddings: EmbeddingsInterface): Promise<FaissStore>;
static loadFromPython(directory: string, embeddings: EmbeddingsInterface): Promise<FaissStore>;
/**
* Creates a new FaissStore from an array of texts, their corresponding
* metadata, and an Embeddings object.
* @param texts An array of texts.
* @param metadatas An array of metadata corresponding to the texts, or a single metadata object to be used for all texts.
* @param embeddings An Embeddings object.
* @param dbConfig An optional configuration object for the document store.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig?: {
docstore?: SynchronousInMemoryDocstore;
}): Promise<FaissStore>;
/**
* Creates a new FaissStore from an array of Document objects and an
* Embeddings object.
* @param docs An array of Document objects.
* @param embeddings An Embeddings object.
* @param dbConfig An optional configuration object for the document store.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig?: {
docstore?: SynchronousInMemoryDocstore;
}): Promise<FaissStore>;
/**
* Creates a new FaissStore from an existing FaissStore and an Embeddings
* object.
* @param targetIndex An existing FaissStore.
* @param embeddings An Embeddings object.
* @param dbConfig An optional configuration object for the document store.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static fromIndex(targetIndex: FaissStore, embeddings: EmbeddingsInterface, dbConfig?: {
docstore?: SynchronousInMemoryDocstore;
}): Promise<FaissStore>;
static importFaiss(): Promise<{
IndexFlatL2: typeof IndexFlatL2;
}>;
static importPickleparser(): Promise<{
Parser: typeof Parser;
NameRegistry: typeof NameRegistry;
}>;
}