251 lines
9.2 KiB
JavaScript
251 lines
9.2 KiB
JavaScript
|
import * as uuid from "uuid";
|
||
|
import { createClient } from "@clickhouse/client";
|
||
|
import { VectorStore } from "@langchain/core/vectorstores";
|
||
|
import { Document } from "@langchain/core/documents";
|
||
|
/**
|
||
|
* Class for interacting with the MyScale database. It extends the
|
||
|
* VectorStore class and provides methods for adding vectors and
|
||
|
* documents, searching for similar vectors, and creating instances from
|
||
|
* texts or documents.
|
||
|
*/
|
||
|
export class MyScaleStore extends VectorStore {
|
||
|
_vectorstoreType() {
|
||
|
return "myscale";
|
||
|
}
|
||
|
constructor(embeddings, args) {
|
||
|
super(embeddings, args);
|
||
|
Object.defineProperty(this, "client", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "indexType", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "indexParam", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "columnMap", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "database", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "table", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "metric", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "isInitialized", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: false
|
||
|
});
|
||
|
this.indexType = args.indexType || "MSTG";
|
||
|
this.indexParam = args.indexParam || {};
|
||
|
this.columnMap = args.columnMap || {
|
||
|
id: "id",
|
||
|
text: "text",
|
||
|
vector: "vector",
|
||
|
metadata: "metadata",
|
||
|
};
|
||
|
this.database = args.database || "default";
|
||
|
this.table = args.table || "vector_table";
|
||
|
this.metric = args.metric || "Cosine";
|
||
|
this.client = createClient({
|
||
|
host: `${args.protocol ?? "https://"}${args.host}:${args.port}`,
|
||
|
username: args.username,
|
||
|
password: args.password,
|
||
|
session_id: uuid.v4(),
|
||
|
});
|
||
|
}
|
||
|
/**
|
||
|
* Method to add vectors to the MyScale database.
|
||
|
* @param vectors The vectors to add.
|
||
|
* @param documents The documents associated with the vectors.
|
||
|
* @returns Promise that resolves when the vectors have been added.
|
||
|
*/
|
||
|
async addVectors(vectors, documents) {
|
||
|
if (vectors.length === 0) {
|
||
|
return;
|
||
|
}
|
||
|
if (!this.isInitialized) {
|
||
|
await this.initialize(vectors[0].length);
|
||
|
}
|
||
|
const queryStr = this.buildInsertQuery(vectors, documents);
|
||
|
await this.client.exec({ query: queryStr });
|
||
|
}
|
||
|
/**
|
||
|
* Method to add documents to the MyScale database.
|
||
|
* @param documents The documents to add.
|
||
|
* @returns Promise that resolves when the documents have been added.
|
||
|
*/
|
||
|
async addDocuments(documents) {
|
||
|
return this.addVectors(await this.embeddings.embedDocuments(documents.map((d) => d.pageContent)), documents);
|
||
|
}
|
||
|
/**
|
||
|
* Method to search for vectors that are similar to a given query vector.
|
||
|
* @param query The query vector.
|
||
|
* @param k The number of similar vectors to return.
|
||
|
* @param filter Optional filter for the search results.
|
||
|
* @returns Promise that resolves with an array of tuples, each containing a Document and a score.
|
||
|
*/
|
||
|
async similaritySearchVectorWithScore(query, k, filter) {
|
||
|
if (!this.isInitialized) {
|
||
|
await this.initialize(query.length);
|
||
|
}
|
||
|
const queryStr = this.buildSearchQuery(query, k, filter);
|
||
|
const queryResultSet = await this.client.query({ query: queryStr });
|
||
|
const queryResult = await queryResultSet.json();
|
||
|
const result = queryResult.data.map((item) => [
|
||
|
new Document({ pageContent: item.text, metadata: item.metadata }),
|
||
|
item.dist,
|
||
|
]);
|
||
|
return result;
|
||
|
}
|
||
|
/**
|
||
|
* Static method to create an instance of MyScaleStore from texts.
|
||
|
* @param texts The texts to use.
|
||
|
* @param metadatas The metadata associated with the texts.
|
||
|
* @param embeddings The embeddings to use.
|
||
|
* @param args The arguments for the MyScaleStore.
|
||
|
* @returns Promise that resolves with a new instance of MyScaleStore.
|
||
|
*/
|
||
|
static async fromTexts(texts, metadatas, embeddings, args) {
|
||
|
const docs = [];
|
||
|
for (let i = 0; i < texts.length; i += 1) {
|
||
|
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
|
||
|
const newDoc = new Document({
|
||
|
pageContent: texts[i],
|
||
|
metadata,
|
||
|
});
|
||
|
docs.push(newDoc);
|
||
|
}
|
||
|
return MyScaleStore.fromDocuments(docs, embeddings, args);
|
||
|
}
|
||
|
/**
|
||
|
* Static method to create an instance of MyScaleStore from documents.
|
||
|
* @param docs The documents to use.
|
||
|
* @param embeddings The embeddings to use.
|
||
|
* @param args The arguments for the MyScaleStore.
|
||
|
* @returns Promise that resolves with a new instance of MyScaleStore.
|
||
|
*/
|
||
|
static async fromDocuments(docs, embeddings, args) {
|
||
|
const instance = new this(embeddings, args);
|
||
|
await instance.addDocuments(docs);
|
||
|
return instance;
|
||
|
}
|
||
|
/**
|
||
|
* Static method to create an instance of MyScaleStore from an existing
|
||
|
* index.
|
||
|
* @param embeddings The embeddings to use.
|
||
|
* @param args The arguments for the MyScaleStore.
|
||
|
* @returns Promise that resolves with a new instance of MyScaleStore.
|
||
|
*/
|
||
|
static async fromExistingIndex(embeddings, args) {
|
||
|
const instance = new this(embeddings, args);
|
||
|
await instance.initialize();
|
||
|
return instance;
|
||
|
}
|
||
|
/**
|
||
|
* Method to initialize the MyScale database.
|
||
|
* @param dimension Optional dimension of the vectors.
|
||
|
* @returns Promise that resolves when the database has been initialized.
|
||
|
*/
|
||
|
async initialize(dimension) {
|
||
|
const dim = dimension ?? (await this.embeddings.embedQuery("test")).length;
|
||
|
let indexParamStr = "";
|
||
|
for (const [key, value] of Object.entries(this.indexParam)) {
|
||
|
indexParamStr += `, '${key}=${value}'`;
|
||
|
}
|
||
|
const query = `
|
||
|
CREATE TABLE IF NOT EXISTS ${this.database}.${this.table}(
|
||
|
${this.columnMap.id} String,
|
||
|
${this.columnMap.text} String,
|
||
|
${this.columnMap.vector} Array(Float32),
|
||
|
${this.columnMap.metadata} JSON,
|
||
|
CONSTRAINT cons_vec_len CHECK length(${this.columnMap.vector}) = ${dim},
|
||
|
VECTOR INDEX vidx ${this.columnMap.vector} TYPE ${this.indexType}('metric_type=${this.metric}'${indexParamStr})
|
||
|
) ENGINE = MergeTree ORDER BY ${this.columnMap.id}
|
||
|
`;
|
||
|
await this.client.exec({ query: "SET allow_experimental_object_type=1" });
|
||
|
await this.client.exec({
|
||
|
query: "SET output_format_json_named_tuples_as_objects = 1",
|
||
|
});
|
||
|
await this.client.exec({ query });
|
||
|
this.isInitialized = true;
|
||
|
}
|
||
|
/**
|
||
|
* Method to build an SQL query for inserting vectors and documents into
|
||
|
* the MyScale database.
|
||
|
* @param vectors The vectors to insert.
|
||
|
* @param documents The documents to insert.
|
||
|
* @returns The SQL query string.
|
||
|
*/
|
||
|
buildInsertQuery(vectors, documents) {
|
||
|
const columnsStr = Object.values(this.columnMap).join(", ");
|
||
|
const data = [];
|
||
|
for (let i = 0; i < vectors.length; i += 1) {
|
||
|
const vector = vectors[i];
|
||
|
const document = documents[i];
|
||
|
const item = [
|
||
|
`'${uuid.v4()}'`,
|
||
|
`'${this.escapeString(document.pageContent)}'`,
|
||
|
`[${vector}]`,
|
||
|
`'${JSON.stringify(document.metadata)}'`,
|
||
|
].join(", ");
|
||
|
data.push(`(${item})`);
|
||
|
}
|
||
|
const dataStr = data.join(", ");
|
||
|
return `
|
||
|
INSERT INTO TABLE
|
||
|
${this.database}.${this.table}(${columnsStr})
|
||
|
VALUES
|
||
|
${dataStr}
|
||
|
`;
|
||
|
}
|
||
|
escapeString(str) {
|
||
|
return str.replace(/\\/g, "\\\\").replace(/'/g, "\\'");
|
||
|
}
|
||
|
/**
|
||
|
* Method to build an SQL query for searching for similar vectors in the
|
||
|
* MyScale database.
|
||
|
* @param query The query vector.
|
||
|
* @param k The number of similar vectors to return.
|
||
|
* @param filter Optional filter for the search results.
|
||
|
* @returns The SQL query string.
|
||
|
*/
|
||
|
buildSearchQuery(query, k, filter) {
|
||
|
const order = this.metric === "IP" ? "DESC" : "ASC";
|
||
|
const whereStr = filter ? `PREWHERE ${filter.whereStr}` : "";
|
||
|
return `
|
||
|
SELECT ${this.columnMap.text} AS text, ${this.columnMap.metadata} AS metadata, dist
|
||
|
FROM ${this.database}.${this.table}
|
||
|
${whereStr}
|
||
|
ORDER BY distance(${this.columnMap.vector}, [${query}]) AS dist ${order}
|
||
|
LIMIT ${k}
|
||
|
`;
|
||
|
}
|
||
|
}
|