agsamantha/node_modules/langchain/dist/chains/router/multi_prompt.cjs

128 lines
5.5 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.MultiPromptChain = void 0;
const zod_1 = require("zod");
const prompts_1 = require("@langchain/core/prompts");
const multi_route_js_1 = require("./multi_route.cjs");
const multi_prompt_prompt_js_1 = require("./multi_prompt_prompt.cjs");
const llm_chain_js_1 = require("../../chains/llm_chain.cjs");
const llm_router_js_1 = require("./llm_router.cjs");
const conversation_js_1 = require("../../chains/conversation.cjs");
const utils_js_1 = require("./utils.cjs");
const router_js_1 = require("../../output_parsers/router.cjs");
/**
* A class that represents a multi-prompt chain in the LangChain
* framework. It extends the MultiRouteChain class and provides additional
* functionality specific to multi-prompt chains.
* @example
* ```typescript
* const multiPromptChain = MultiPromptChain.fromLLMAndPrompts(new ChatOpenAI(), {
* promptNames: ["physics", "math", "history"],
* promptDescriptions: [
* "Good for answering questions about physics",
* "Good for answering math questions",
* "Good for answering questions about history",
* ],
* promptTemplates: [
* `You are a very smart physics professor. Here is a question:\n{input}\n`,
* `You are a very good mathematician. Here is a question:\n{input}\n`,
* `You are a very smart history professor. Here is a question:\n{input}\n`,
* ],
* });
* const result = await multiPromptChain.call({
* input: "What is the speed of light?",
* });
* ```
*/
class MultiPromptChain extends multi_route_js_1.MultiRouteChain {
/**
* @deprecated Use `fromLLMAndPrompts` instead
*/
static fromPrompts(llm, promptNames, promptDescriptions, promptTemplates, defaultChain, options) {
return MultiPromptChain.fromLLMAndPrompts(llm, {
promptNames,
promptDescriptions,
promptTemplates,
defaultChain,
multiRouteChainOpts: options,
});
}
/**
* A static method that creates an instance of MultiPromptChain from a
* BaseLanguageModel and a set of prompts. It takes in optional parameters
* for the default chain and additional options.
* @param llm A BaseLanguageModel instance.
* @param promptNames An array of prompt names.
* @param promptDescriptions An array of prompt descriptions.
* @param promptTemplates An array of prompt templates.
* @param defaultChain An optional BaseChain instance to be used as the default chain.
* @param llmChainOpts Optional parameters for the LLMChainInput, excluding 'llm' and 'prompt'.
* @param conversationChainOpts Optional parameters for the LLMChainInput, excluding 'llm' and 'outputKey'.
* @param multiRouteChainOpts Optional parameters for the MultiRouteChainInput, excluding 'defaultChain'.
* @returns An instance of MultiPromptChain.
*/
static fromLLMAndPrompts(llm, { promptNames, promptDescriptions, promptTemplates, defaultChain, llmChainOpts, conversationChainOpts, multiRouteChainOpts, }) {
const destinations = (0, utils_js_1.zipEntries)(promptNames, promptDescriptions).map(([name, desc]) => `${name}: ${desc}`);
const structuredOutputParserSchema = zod_1.z.object({
destination: zod_1.z
.string()
.optional()
.describe('name of the question answering system to use or "DEFAULT"'),
next_inputs: zod_1.z
.object({
input: zod_1.z
.string()
.describe("a potentially modified version of the original input"),
})
.describe("input to be fed to the next model"),
});
const outputParser = new router_js_1.RouterOutputParser(structuredOutputParserSchema);
const destinationsStr = destinations.join("\n");
const routerTemplate = (0, prompts_1.interpolateFString)((0, multi_prompt_prompt_js_1.STRUCTURED_MULTI_PROMPT_ROUTER_TEMPLATE)(outputParser.getFormatInstructions({ interpolationDepth: 4 })), {
destinations: destinationsStr,
});
const routerPrompt = new prompts_1.PromptTemplate({
template: routerTemplate,
inputVariables: ["input"],
outputParser,
});
const routerChain = llm_router_js_1.LLMRouterChain.fromLLM(llm, routerPrompt);
const destinationChains = (0, utils_js_1.zipEntries)(promptNames, promptTemplates).reduce((acc, [name, template]) => {
let myPrompt;
if (typeof template === "object") {
myPrompt = template;
}
else if (typeof template === "string") {
myPrompt = new prompts_1.PromptTemplate({
template: template,
inputVariables: ["input"],
});
}
else {
throw new Error("Invalid prompt template");
}
acc[name] = new llm_chain_js_1.LLMChain({
...llmChainOpts,
llm,
prompt: myPrompt,
});
return acc;
}, {});
const convChain = new conversation_js_1.ConversationChain({
...conversationChainOpts,
llm,
outputKey: "text",
});
return new MultiPromptChain({
...multiRouteChainOpts,
routerChain,
destinationChains,
defaultChain: defaultChain ?? convChain,
});
}
_chainType() {
return "multi_prompt_chain";
}
}
exports.MultiPromptChain = MultiPromptChain;