agsamantha/node_modules/langchain/dist/agents/chat/index.js

120 lines
4.8 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, } from "@langchain/core/prompts";
import { LLMChain } from "../../chains/llm_chain.js";
import { Agent } from "../agent.js";
import { ChatAgentOutputParser } from "./outputParser.js";
import { FORMAT_INSTRUCTIONS, PREFIX, SUFFIX } from "./prompt.js";
const DEFAULT_HUMAN_MESSAGE_TEMPLATE = "{input}\n\n{agent_scratchpad}";
/**
* Agent for the MRKL chain.
* @augments Agent
*
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createStructuredChatAgent.html | createStructuredChatAgent method instead}.
*/
export class ChatAgent extends Agent {
static lc_name() {
return "ChatAgent";
}
constructor(input) {
const outputParser = input?.outputParser ?? ChatAgent.getDefaultOutputParser();
super({ ...input, outputParser });
Object.defineProperty(this, "lc_namespace", {
enumerable: true,
configurable: true,
writable: true,
value: ["langchain", "agents", "chat"]
});
}
_agentType() {
return "chat-zero-shot-react-description";
}
observationPrefix() {
return "Observation: ";
}
llmPrefix() {
return "Thought:";
}
_stop() {
return ["Observation:"];
}
/**
* Validates that all tools have descriptions. Throws an error if a tool
* without a description is found.
* @param tools Array of Tool instances to validate.
* @returns void
*/
static validateTools(tools) {
const descriptionlessTool = tools.find((tool) => !tool.description);
if (descriptionlessTool) {
const msg = `Got a tool ${descriptionlessTool.name} without a description.` +
` This agent requires descriptions for all tools.`;
throw new Error(msg);
}
}
/**
* Returns a default output parser for the ChatAgent.
* @param _fields Optional OutputParserArgs to customize the output parser.
* @returns ChatAgentOutputParser instance
*/
static getDefaultOutputParser(_fields) {
return new ChatAgentOutputParser();
}
/**
* Constructs the agent's scratchpad, which is a string representation of
* the agent's previous steps.
* @param steps Array of AgentStep instances representing the agent's previous steps.
* @returns Promise resolving to a string representing the agent's scratchpad.
*/
async constructScratchPad(steps) {
const agentScratchpad = await super.constructScratchPad(steps);
if (agentScratchpad) {
return `This was your previous work (but I haven't seen any of it! I only see what you return as final answer):\n${agentScratchpad}`;
}
return agentScratchpad;
}
/**
* Create prompt in the style of the zero shot agent.
*
* @param tools - List of tools the agent will have access to, used to format the prompt.
* @param args - Arguments to create the prompt with.
* @param args.suffix - String to put after the list of tools.
* @param args.prefix - String to put before the list of tools.
* @param args.humanMessageTemplate - String to use directly as the human message template
* @param args.formatInstructions - Formattable string to use as the instructions template
*/
static createPrompt(tools, args) {
const { prefix = PREFIX, suffix = SUFFIX, humanMessageTemplate = DEFAULT_HUMAN_MESSAGE_TEMPLATE, formatInstructions = FORMAT_INSTRUCTIONS, } = args ?? {};
const toolStrings = tools
.map((tool) => `${tool.name}: ${tool.description}`)
.join("\n");
const template = [prefix, toolStrings, formatInstructions, suffix].join("\n\n");
const messages = [
SystemMessagePromptTemplate.fromTemplate(template),
HumanMessagePromptTemplate.fromTemplate(humanMessageTemplate),
];
return ChatPromptTemplate.fromMessages(messages);
}
/**
* Creates a ChatAgent instance using a language model, tools, and
* optional arguments.
* @param llm BaseLanguageModelInterface instance to use in the agent.
* @param tools Array of Tool instances to include in the agent.
* @param args Optional arguments to customize the agent and prompt.
* @returns ChatAgent instance
*/
static fromLLMAndTools(llm, tools, args) {
ChatAgent.validateTools(tools);
const prompt = ChatAgent.createPrompt(tools, args);
const chain = new LLMChain({
prompt,
llm,
callbacks: args?.callbacks ?? args?.callbackManager,
});
const outputParser = args?.outputParser ?? ChatAgent.getDefaultOutputParser();
return new ChatAgent({
llmChain: chain,
outputParser,
allowedTools: tools.map((t) => t.name),
});
}
}