159 lines
5.1 KiB
JavaScript
159 lines
5.1 KiB
JavaScript
|
import { OpenAIEmbeddings } from "@langchain/openai";
|
||
|
import { PairwiseStringEvaluator, StringEvaluator, } from "../base.js";
|
||
|
import { cosine } from "../../util/ml-distance/similarities.js";
|
||
|
import { chebyshev, manhattan } from "../../util/ml-distance/distances.js";
|
||
|
import { euclidean } from "../../util/ml-distance-euclidean/euclidean.js";
|
||
|
/**
|
||
|
* Get the distance function for the given distance type.
|
||
|
* @param distance The distance type.
|
||
|
* @return The distance function.
|
||
|
*/
|
||
|
export function getDistanceCalculationFunction(distanceType) {
|
||
|
const distanceFunctions = {
|
||
|
cosine: (X, Y) => 1.0 - cosine(X, Y),
|
||
|
euclidean,
|
||
|
manhattan,
|
||
|
chebyshev,
|
||
|
};
|
||
|
return distanceFunctions[distanceType];
|
||
|
}
|
||
|
/**
|
||
|
* Compute the score based on the distance metric.
|
||
|
* @param vectors The input vectors.
|
||
|
* @param distanceMetric The distance metric.
|
||
|
* @return The computed score.
|
||
|
*/
|
||
|
export function computeEvaluationScore(vectors, distanceMetric) {
|
||
|
const metricFunction = getDistanceCalculationFunction(distanceMetric);
|
||
|
return metricFunction(vectors[0], vectors[1]);
|
||
|
}
|
||
|
/**
|
||
|
* Use embedding distances to score semantic difference between
|
||
|
* a prediction and reference.
|
||
|
*/
|
||
|
export class EmbeddingDistanceEvalChain extends StringEvaluator {
|
||
|
constructor(fields) {
|
||
|
super();
|
||
|
Object.defineProperty(this, "requiresReference", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: true
|
||
|
});
|
||
|
Object.defineProperty(this, "requiresInput", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: false
|
||
|
});
|
||
|
Object.defineProperty(this, "outputKey", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: "score"
|
||
|
});
|
||
|
Object.defineProperty(this, "embedding", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "distanceMetric", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: "cosine"
|
||
|
});
|
||
|
this.embedding = fields?.embedding || new OpenAIEmbeddings();
|
||
|
this.distanceMetric = fields?.distanceMetric || "cosine";
|
||
|
}
|
||
|
_chainType() {
|
||
|
return `embedding_${this.distanceMetric}_distance`;
|
||
|
}
|
||
|
async _evaluateStrings(args, config) {
|
||
|
const result = await this.call(args, config);
|
||
|
return { [this.outputKey]: result[this.outputKey] };
|
||
|
}
|
||
|
get inputKeys() {
|
||
|
return ["reference", "prediction"];
|
||
|
}
|
||
|
get outputKeys() {
|
||
|
return [this.outputKey];
|
||
|
}
|
||
|
async _call(values, _runManager) {
|
||
|
const { prediction, reference } = values;
|
||
|
if (!this.embedding)
|
||
|
throw new Error("Embedding is undefined");
|
||
|
const vectors = await this.embedding.embedDocuments([
|
||
|
prediction,
|
||
|
reference,
|
||
|
]);
|
||
|
const score = computeEvaluationScore(vectors, this.distanceMetric);
|
||
|
return { [this.outputKey]: score };
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Use embedding distances to score semantic difference between two predictions.
|
||
|
*/
|
||
|
export class PairwiseEmbeddingDistanceEvalChain extends PairwiseStringEvaluator {
|
||
|
constructor(fields) {
|
||
|
super();
|
||
|
Object.defineProperty(this, "requiresReference", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: false
|
||
|
});
|
||
|
Object.defineProperty(this, "requiresInput", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: false
|
||
|
});
|
||
|
Object.defineProperty(this, "outputKey", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: "score"
|
||
|
});
|
||
|
Object.defineProperty(this, "embedding", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "distanceMetric", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: "cosine"
|
||
|
});
|
||
|
this.embedding = fields?.embedding || new OpenAIEmbeddings();
|
||
|
this.distanceMetric = fields?.distanceMetric || "cosine";
|
||
|
}
|
||
|
_chainType() {
|
||
|
return `pairwise_embedding_${this.distanceMetric}_distance`;
|
||
|
}
|
||
|
async _evaluateStringPairs(args, config) {
|
||
|
const result = await this.call(args, config);
|
||
|
return { [this.outputKey]: result[this.outputKey] };
|
||
|
}
|
||
|
get inputKeys() {
|
||
|
return ["prediction", "predictionB"];
|
||
|
}
|
||
|
get outputKeys() {
|
||
|
return [this.outputKey];
|
||
|
}
|
||
|
async _call(values, _runManager) {
|
||
|
const { prediction, predictionB } = values;
|
||
|
if (!this.embedding)
|
||
|
throw new Error("Embedding is undefined");
|
||
|
const vectors = await this.embedding.embedDocuments([
|
||
|
prediction,
|
||
|
predictionB,
|
||
|
]);
|
||
|
const score = computeEvaluationScore(vectors, this.distanceMetric);
|
||
|
return { [this.outputKey]: score };
|
||
|
}
|
||
|
}
|