agsamantha/node_modules/langchain/dist/retrievers/hyde.cjs

132 lines
4.6 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.getPromptTemplateFromKey = exports.HydeRetriever = void 0;
const prompts_1 = require("@langchain/core/prompts");
const prompt_values_1 = require("@langchain/core/prompt_values");
const vectorstores_1 = require("@langchain/core/vectorstores");
/**
* A class for retrieving relevant documents based on a given query. It
* extends the VectorStoreRetriever class and uses a BaseLanguageModel to
* generate a hypothetical answer to the query, which is then used to
* retrieve relevant documents.
* @example
* ```typescript
* const retriever = new HydeRetriever({
* vectorStore: new MemoryVectorStore(new OpenAIEmbeddings()),
* llm: new ChatOpenAI(),
* k: 1,
* });
* await vectorStore.addDocuments(
* [
* "My name is John.",
* "My name is Bob.",
* "My favourite food is pizza.",
* "My favourite food is pasta.",
* ].map((pageContent) => new Document({ pageContent })),
* );
* const results = await retriever.getRelevantDocuments(
* "What is my favourite food?",
* );
* ```
*/
class HydeRetriever extends vectorstores_1.VectorStoreRetriever {
static lc_name() {
return "HydeRetriever";
}
get lc_namespace() {
return ["langchain", "retrievers", "hyde"];
}
constructor(fields) {
super(fields);
Object.defineProperty(this, "llm", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "promptTemplate", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.llm = fields.llm;
this.promptTemplate =
typeof fields.promptTemplate === "string"
? getPromptTemplateFromKey(fields.promptTemplate)
: fields.promptTemplate;
if (this.promptTemplate) {
const { inputVariables } = this.promptTemplate;
if (inputVariables.length !== 1 && inputVariables[0] !== "question") {
throw new Error(`Prompt template must accept a single input variable 'question'. Invalid input variables for prompt template: ${inputVariables}`);
}
}
}
async _getRelevantDocuments(query, runManager) {
let value = new prompt_values_1.StringPromptValue(query);
// Use a custom template if provided
if (this.promptTemplate) {
value = await this.promptTemplate.formatPromptValue({ question: query });
}
// Get a hypothetical answer from the LLM
const res = await this.llm.generatePrompt([value]);
const answer = res.generations[0][0].text;
// Retrieve relevant documents based on the hypothetical answer
const results = await this.vectorStore.similaritySearch(answer, this.k, this.filter, runManager?.getChild("vectorstore"));
return results;
}
}
exports.HydeRetriever = HydeRetriever;
/**
* Returns a BasePromptTemplate instance based on a given PromptKey.
*/
function getPromptTemplateFromKey(key) {
let template;
switch (key) {
case "websearch":
template = `Please write a passage to answer the question
Question: {question}
Passage:`;
break;
case "scifact":
template = `Please write a scientific paper passage to support/refute the claim
Claim: {question}
Passage:`;
break;
case "arguana":
template = `Please write a counter argument for the passage
Passage: {question}
Counter Argument:`;
break;
case "trec-covid":
template = `Please write a scientific paper passage to answer the question
Question: {question}
Passage:`;
break;
case "fiqa":
template = `Please write a financial article passage to answer the question
Question: {question}
Passage:`;
break;
case "dbpedia-entity":
template = `Please write a passage to answer the question.
Question: {question}
Passage:`;
break;
case "trec-news":
template = `Please write a news passage about the topic.
Topic: {question}
Passage:`;
break;
case "mr-tydi":
template = `Please write a passage in Swahili/Korean/Japanese/Bengali to answer the question in detail.
Question: {question}
Passage:`;
break;
default:
throw new Error(`Invalid prompt key: ${key}`);
}
return prompts_1.PromptTemplate.fromTemplate(template);
}
exports.getPromptTemplateFromKey = getPromptTemplateFromKey;