agsamantha/node_modules/langchain/dist/retrievers/multi_vector.d.ts

46 lines
1.7 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { BaseRetriever, type BaseRetrieverInput } from "@langchain/core/retrievers";
import type { VectorStoreInterface } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
import { BaseStore, type BaseStoreInterface } from "@langchain/core/stores";
/**
* Arguments for the MultiVectorRetriever class.
*/
export interface MultiVectorRetrieverInput extends BaseRetrieverInput {
vectorstore: VectorStoreInterface;
/** @deprecated Prefer `byteStore`. */
docstore?: BaseStoreInterface<string, Document>;
byteStore?: BaseStore<string, Uint8Array>;
idKey?: string;
childK?: number;
parentK?: number;
}
/**
* A retriever that retrieves documents from a vector store and a document
* store. It uses the vector store to find relevant documents based on a
* query, and then retrieves the full documents from the document store.
* @example
* ```typescript
* const retriever = new MultiVectorRetriever({
* vectorstore: new FaissStore(),
* byteStore: new InMemoryStore<Unit8Array>(),
* idKey: "doc_id",
* childK: 20,
* parentK: 5,
* });
*
* const retrieverResult = await retriever.getRelevantDocuments("justice breyer");
* console.log(retrieverResult[0].pageContent.length);
* ```
*/
export declare class MultiVectorRetriever extends BaseRetriever {
static lc_name(): string;
lc_namespace: string[];
vectorstore: VectorStoreInterface;
docstore: BaseStoreInterface<string, Document>;
protected idKey: string;
protected childK?: number;
protected parentK?: number;
constructor(args: MultiVectorRetrieverInput);
_getRelevantDocuments(query: string): Promise<Document[]>;
}