156 lines
6 KiB
TypeScript
156 lines
6 KiB
TypeScript
|
import type { z } from "zod";
|
||
|
import { JsonSchema7Type } from "zod-to-json-schema";
|
||
|
import type { BaseOutputParser } from "@langchain/core/output_parsers";
|
||
|
import type { BasePromptTemplate } from "@langchain/core/prompts";
|
||
|
import type { Runnable, RunnableInterface } from "@langchain/core/runnables";
|
||
|
import type { BaseFunctionCallOptions, BaseLanguageModelInput, FunctionDefinition } from "@langchain/core/language_models/base";
|
||
|
import type { InputValues } from "@langchain/core/utils/types";
|
||
|
import type { BaseMessage } from "@langchain/core/messages";
|
||
|
/**
|
||
|
* Configuration params for the createOpenAIFnRunnable method.
|
||
|
*/
|
||
|
export type CreateOpenAIFnRunnableConfig<RunInput extends Record<string, any>, RunOutput> = {
|
||
|
functions: FunctionDefinition[];
|
||
|
/** Language model to use, assumed to support the OpenAI function-calling API. */
|
||
|
llm: RunnableInterface<BaseLanguageModelInput, BaseMessage, BaseFunctionCallOptions>;
|
||
|
/** BasePromptTemplate to pass to the model. */
|
||
|
prompt: BasePromptTemplate<InputValues<Extract<keyof RunInput, string>>>;
|
||
|
/**
|
||
|
* Only used if a single function is passed in. If `true`, then the model will be
|
||
|
* forced to use the given function. If `false`, then the model will be given the
|
||
|
* option to use the given function or not.
|
||
|
*/
|
||
|
enforceSingleFunctionUsage?: boolean;
|
||
|
/**
|
||
|
* BaseLLMOutputParser to use for parsing model outputs.
|
||
|
* By default will be inferred from the function types.
|
||
|
*/
|
||
|
outputParser?: BaseOutputParser<RunOutput>;
|
||
|
};
|
||
|
/**
|
||
|
* Creates a runnable sequence that calls OpenAI functions.
|
||
|
* @param config - The parameters required to create the runnable.
|
||
|
* @returns A runnable sequence that will pass the given functions to the model when run.
|
||
|
*
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* const openAIFunction = {
|
||
|
* name: "get_person_details",
|
||
|
* description: "Get details about a person",
|
||
|
* parameters: {
|
||
|
* title: "Person",
|
||
|
* description: "Identifying information about a person.",
|
||
|
* type: "object",
|
||
|
* properties: {
|
||
|
* name: { title: "Name", description: "The person's name", type: "string" },
|
||
|
* age: { title: "Age", description: "The person's age", type: "integer" },
|
||
|
* fav_food: {
|
||
|
* title: "Fav Food",
|
||
|
* description: "The person's favorite food",
|
||
|
* type: "string",
|
||
|
* },
|
||
|
* },
|
||
|
* required: ["name", "age"],
|
||
|
* },
|
||
|
* };
|
||
|
*
|
||
|
* const model = new ChatOpenAI();
|
||
|
* const prompt = ChatPromptTemplate.fromMessages([
|
||
|
* ["human", "Human description: {description}"],
|
||
|
* ]);
|
||
|
* const outputParser = new JsonOutputFunctionsParser();
|
||
|
*
|
||
|
* const runnable = createOpenAIFnRunnable({
|
||
|
* functions: [openAIFunction],
|
||
|
* llm: model,
|
||
|
* prompt,
|
||
|
* enforceSingleFunctionUsage: true, // Default is true
|
||
|
* outputParser
|
||
|
* });
|
||
|
* const response = await runnable.invoke({
|
||
|
* description:
|
||
|
* "My name's John Doe and I'm 30 years old. My favorite kind of food are chocolate chip cookies.",
|
||
|
* });
|
||
|
*
|
||
|
* console.log(response);
|
||
|
*
|
||
|
* // { name: 'John Doe', age: 30, fav_food: 'chocolate chip cookies' }
|
||
|
* ```
|
||
|
*/
|
||
|
export declare function createOpenAIFnRunnable<RunInput extends Record<string, any> = Record<string, any>, RunOutput extends Record<string, any> = Record<string, any>>(config: CreateOpenAIFnRunnableConfig<RunInput, RunOutput>): Runnable<RunInput, RunOutput>;
|
||
|
/**
|
||
|
* Configuration params for the createStructuredOutputRunnable method.
|
||
|
*/
|
||
|
export type CreateStructuredOutputRunnableConfig<RunInput extends Record<string, any>, RunOutput> = {
|
||
|
/**
|
||
|
* Schema to output. Must be either valid JSONSchema or a Zod schema.
|
||
|
*/
|
||
|
outputSchema: z.AnyZodObject | JsonSchema7Type;
|
||
|
/**
|
||
|
* Language model to use, assumed to support the OpenAI function-calling API.
|
||
|
*/
|
||
|
llm: RunnableInterface<BaseLanguageModelInput, BaseMessage, BaseFunctionCallOptions>;
|
||
|
/** BasePromptTemplate to pass to the model. */
|
||
|
prompt: BasePromptTemplate<InputValues<Extract<keyof RunInput, string>>>;
|
||
|
/**
|
||
|
* BaseLLMOutputParser to use for parsing model outputs.
|
||
|
*/
|
||
|
outputParser?: BaseOutputParser<RunOutput>;
|
||
|
};
|
||
|
/**
|
||
|
* @deprecated Prefer the `.withStructuredOutput` method on chat model classes.
|
||
|
*
|
||
|
* Create a runnable that uses an OpenAI function to get a structured output.
|
||
|
* @param config Params required to create the runnable.
|
||
|
* @returns A runnable sequence that will pass the given function to the model when run.
|
||
|
*
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* import { createStructuredOutputRunnable } from "langchain/chains/openai_functions";
|
||
|
* import { ChatOpenAI } from "@langchain/openai";
|
||
|
* import { ChatPromptTemplate } from "@langchain/core/prompts";
|
||
|
* import { JsonOutputFunctionsParser } from "langchain/output_parsers";
|
||
|
*
|
||
|
* const jsonSchema = {
|
||
|
* title: "Person",
|
||
|
* description: "Identifying information about a person.",
|
||
|
* type: "object",
|
||
|
* properties: {
|
||
|
* name: { title: "Name", description: "The person's name", type: "string" },
|
||
|
* age: { title: "Age", description: "The person's age", type: "integer" },
|
||
|
* fav_food: {
|
||
|
* title: "Fav Food",
|
||
|
* description: "The person's favorite food",
|
||
|
* type: "string",
|
||
|
* },
|
||
|
* },
|
||
|
* required: ["name", "age"],
|
||
|
* };
|
||
|
*
|
||
|
* const model = new ChatOpenAI();
|
||
|
* const prompt = ChatPromptTemplate.fromMessages([
|
||
|
* ["human", "Human description: {description}"],
|
||
|
* ]);
|
||
|
*
|
||
|
* const outputParser = new JsonOutputFunctionsParser();
|
||
|
*
|
||
|
* // Also works with Zod schema
|
||
|
* const runnable = createStructuredOutputRunnable({
|
||
|
* outputSchema: jsonSchema,
|
||
|
* llm: model,
|
||
|
* prompt,
|
||
|
* outputParser
|
||
|
* });
|
||
|
*
|
||
|
* const response = await runnable.invoke({
|
||
|
* description:
|
||
|
* "My name's John Doe and I'm 30 years old. My favorite kind of food are chocolate chip cookies.",
|
||
|
* });
|
||
|
*
|
||
|
* console.log(response);
|
||
|
*
|
||
|
* // { name: 'John Doe', age: 30, fav_food: 'chocolate chip cookies' }
|
||
|
* ```
|
||
|
*/
|
||
|
export declare function createStructuredOutputRunnable<RunInput extends Record<string, any> = Record<string, any>, RunOutput extends Record<string, any> = Record<string, any>>(config: CreateStructuredOutputRunnableConfig<RunInput, RunOutput>): Runnable<RunInput, RunOutput>;
|