agsamantha/node_modules/langchain/dist/chains/openai_functions/base.js

142 lines
4.6 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { zodToJsonSchema } from "zod-to-json-schema";
import { JsonOutputFunctionsParser } from "../../output_parsers/openai_functions.js";
/**
* Creates a runnable sequence that calls OpenAI functions.
* @param config - The parameters required to create the runnable.
* @returns A runnable sequence that will pass the given functions to the model when run.
*
* @example
* ```typescript
* const openAIFunction = {
* name: "get_person_details",
* description: "Get details about a person",
* parameters: {
* title: "Person",
* description: "Identifying information about a person.",
* type: "object",
* properties: {
* name: { title: "Name", description: "The person's name", type: "string" },
* age: { title: "Age", description: "The person's age", type: "integer" },
* fav_food: {
* title: "Fav Food",
* description: "The person's favorite food",
* type: "string",
* },
* },
* required: ["name", "age"],
* },
* };
*
* const model = new ChatOpenAI();
* const prompt = ChatPromptTemplate.fromMessages([
* ["human", "Human description: {description}"],
* ]);
* const outputParser = new JsonOutputFunctionsParser();
*
* const runnable = createOpenAIFnRunnable({
* functions: [openAIFunction],
* llm: model,
* prompt,
* enforceSingleFunctionUsage: true, // Default is true
* outputParser
* });
* const response = await runnable.invoke({
* description:
* "My name's John Doe and I'm 30 years old. My favorite kind of food are chocolate chip cookies.",
* });
*
* console.log(response);
*
* // { name: 'John Doe', age: 30, fav_food: 'chocolate chip cookies' }
* ```
*/
export function createOpenAIFnRunnable(config) {
const { functions, llm, prompt, enforceSingleFunctionUsage = true, outputParser = new JsonOutputFunctionsParser(), } = config;
const llmKwargs = {
functions,
};
if (functions.length === 1 && enforceSingleFunctionUsage) {
llmKwargs.function_call = {
name: functions[0].name,
};
}
const llmWithKwargs = llm.bind(llmKwargs);
return prompt.pipe(llmWithKwargs).pipe(outputParser);
}
function isZodSchema(schema) {
return typeof schema.safeParse === "function";
}
/**
* @deprecated Prefer the `.withStructuredOutput` method on chat model classes.
*
* Create a runnable that uses an OpenAI function to get a structured output.
* @param config Params required to create the runnable.
* @returns A runnable sequence that will pass the given function to the model when run.
*
* @example
* ```typescript
* import { createStructuredOutputRunnable } from "langchain/chains/openai_functions";
* import { ChatOpenAI } from "@langchain/openai";
* import { ChatPromptTemplate } from "@langchain/core/prompts";
* import { JsonOutputFunctionsParser } from "langchain/output_parsers";
*
* const jsonSchema = {
* title: "Person",
* description: "Identifying information about a person.",
* type: "object",
* properties: {
* name: { title: "Name", description: "The person's name", type: "string" },
* age: { title: "Age", description: "The person's age", type: "integer" },
* fav_food: {
* title: "Fav Food",
* description: "The person's favorite food",
* type: "string",
* },
* },
* required: ["name", "age"],
* };
*
* const model = new ChatOpenAI();
* const prompt = ChatPromptTemplate.fromMessages([
* ["human", "Human description: {description}"],
* ]);
*
* const outputParser = new JsonOutputFunctionsParser();
*
* // Also works with Zod schema
* const runnable = createStructuredOutputRunnable({
* outputSchema: jsonSchema,
* llm: model,
* prompt,
* outputParser
* });
*
* const response = await runnable.invoke({
* description:
* "My name's John Doe and I'm 30 years old. My favorite kind of food are chocolate chip cookies.",
* });
*
* console.log(response);
*
* // { name: 'John Doe', age: 30, fav_food: 'chocolate chip cookies' }
* ```
*/
export function createStructuredOutputRunnable(config) {
const { outputSchema, llm, prompt, outputParser } = config;
const jsonSchema = isZodSchema(outputSchema)
? zodToJsonSchema(outputSchema)
: outputSchema;
const oaiFunction = {
name: "outputFormatter",
description: "Output formatter. Should always be used to format your response to the user",
parameters: jsonSchema,
};
return createOpenAIFnRunnable({
functions: [oaiFunction],
llm,
prompt,
enforceSingleFunctionUsage: true,
outputParser,
});
}