agsamantha/node_modules/langchain/dist/chains/retrieval_qa.d.ts

76 lines
3.2 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import type { BaseRetrieverInterface } from "@langchain/core/retrievers";
import { ChainValues } from "@langchain/core/utils/types";
import { CallbackManagerForChainRun } from "@langchain/core/callbacks/manager";
import { BaseChain, ChainInputs } from "./base.js";
import { SerializedVectorDBQAChain } from "./serde.js";
import { StuffQAChainParams } from "./question_answering/load.js";
export type LoadValues = Record<string, any>;
/**
* Interface for the input parameters of the RetrievalQAChain class.
*/
export interface RetrievalQAChainInput extends Omit<ChainInputs, "memory"> {
retriever: BaseRetrieverInterface;
combineDocumentsChain: BaseChain;
inputKey?: string;
returnSourceDocuments?: boolean;
}
/**
* @deprecated This class will be removed in 1.0.0. See below for an example implementation using
* `createRetrievalChain`:
* Class representing a chain for performing question-answering tasks with
* a retrieval component.
* @example
* ```typescript
* import { createStuffDocumentsChain } from "langchain/chains/combine_documents";
* import { ChatPromptTemplate } from "@langchain/core/prompts";
* import { createRetrievalChain } from "langchain/chains/retrieval";
* import { MemoryVectorStore } from "langchain/vectorstores/memory";
*
* const documents = [...your documents here];
* const embeddings = ...your embeddings model;
* const llm = ...your LLM model;
*
* const vectorstore = await MemoryVectorStore.fromDocuments(
* documents,
* embeddings
* );
* const prompt = ChatPromptTemplate.fromTemplate(`Answer the user's question: {input} based on the following context {context}`);
*
* const combineDocsChain = await createStuffDocumentsChain({
* llm,
* prompt,
* });
* const retriever = vectorstore.asRetriever();
*
* const retrievalChain = await createRetrievalChain({
* combineDocsChain,
* retriever,
* });
* ```
*/
export declare class RetrievalQAChain extends BaseChain implements RetrievalQAChainInput {
static lc_name(): string;
inputKey: string;
get inputKeys(): string[];
get outputKeys(): string[];
retriever: BaseRetrieverInterface;
combineDocumentsChain: BaseChain;
returnSourceDocuments: boolean;
constructor(fields: RetrievalQAChainInput);
/** @ignore */
_call(values: ChainValues, runManager?: CallbackManagerForChainRun): Promise<ChainValues>;
_chainType(): "retrieval_qa";
static deserialize(_data: SerializedVectorDBQAChain, _values: LoadValues): Promise<RetrievalQAChain>;
serialize(): SerializedVectorDBQAChain;
/**
* Creates a new instance of RetrievalQAChain using a BaseLanguageModel
* and a BaseRetriever.
* @param llm The BaseLanguageModel used to generate a new question.
* @param retriever The BaseRetriever used to retrieve relevant documents.
* @param options Optional parameters for the RetrievalQAChain.
* @returns A new instance of RetrievalQAChain.
*/
static fromLLM(llm: BaseLanguageModelInterface, retriever: BaseRetrieverInterface, options?: Partial<Omit<RetrievalQAChainInput, "retriever" | "combineDocumentsChain" | "index">> & StuffQAChainParams): RetrievalQAChain;
}