agsamantha/node_modules/langchain/dist/chains/router/multi_retrieval_qa.d.ts

87 lines
4.1 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import type { BaseRetrieverInterface } from "@langchain/core/retrievers";
import { PromptTemplate } from "@langchain/core/prompts";
import { MultiRouteChain, MultiRouteChainInput } from "./multi_route.js";
import { BaseChain } from "../../chains/base.js";
import { RetrievalQAChainInput } from "../../chains/retrieval_qa.js";
/**
* A type that represents the default values for the MultiRetrievalQAChain
* class. It includes optional properties for the default retriever,
* default prompt, and default chain.
*/
export type MultiRetrievalDefaults = {
defaultRetriever?: BaseRetrieverInterface;
defaultPrompt?: PromptTemplate;
defaultChain?: BaseChain;
};
/**
* A class that represents a multi-retrieval question answering chain in
* the LangChain framework. It extends the MultiRouteChain class and
* provides additional functionality specific to multi-retrieval QA
* chains.
* @example
* ```typescript
* const multiRetrievalQAChain = MultiRetrievalQAChain.fromLLMAndRetrievers(
* new ChatOpenAI(),
* {
* retrieverNames: ["aqua teen", "mst3k", "animaniacs"],
* retrieverDescriptions: [
* "Good for answering questions about Aqua Teen Hunger Force theme song",
* "Good for answering questions about Mystery Science Theater 3000 theme song",
* "Good for answering questions about Animaniacs theme song",
* ],
* retrievers: [
* new MemoryVectorStore().asRetriever(3),
* new MemoryVectorStore().asRetriever(3),
* new MemoryVectorStore().asRetriever(3),
* ],
* retrievalQAChainOpts: {
* returnSourceDocuments: true,
* },
* },
* );
*
* const result = await multiRetrievalQAChain.call({
* input:
* "In the Aqua Teen Hunger Force theme song, who calls himself the mike rula?",
* });
*
* console.log(result.sourceDocuments, result.text);
* ```
*/
export declare class MultiRetrievalQAChain extends MultiRouteChain {
get outputKeys(): string[];
/**
* @deprecated Use `fromRetrieversAndPrompts` instead
*/
static fromRetrievers(llm: BaseLanguageModelInterface, retrieverNames: string[], retrieverDescriptions: string[], retrievers: BaseRetrieverInterface[], retrieverPrompts?: PromptTemplate[], defaults?: MultiRetrievalDefaults, options?: Omit<MultiRouteChainInput, "defaultChain">): MultiRetrievalQAChain;
/**
* A static method that creates an instance of MultiRetrievalQAChain from
* a BaseLanguageModel and a set of retrievers. It takes in optional
* parameters for the retriever names, descriptions, prompts, defaults,
* and additional options. It is an alternative method to fromRetrievers
* and provides more flexibility in configuring the underlying chains.
* @param llm A BaseLanguageModel instance.
* @param retrieverNames An array of retriever names.
* @param retrieverDescriptions An array of retriever descriptions.
* @param retrievers An array of BaseRetrieverInterface instances.
* @param retrieverPrompts An optional array of PromptTemplate instances for the retrievers.
* @param defaults An optional MultiRetrievalDefaults instance.
* @param multiRetrievalChainOpts Additional optional parameters for the multi-retrieval chain.
* @param retrievalQAChainOpts Additional optional parameters for the retrieval QA chain.
* @returns A new instance of MultiRetrievalQAChain.
*/
static fromLLMAndRetrievers(llm: BaseLanguageModelInterface, { retrieverNames, retrieverDescriptions, retrievers, retrieverPrompts, defaults, multiRetrievalChainOpts, retrievalQAChainOpts, }: {
retrieverNames: string[];
retrieverDescriptions: string[];
retrievers: BaseRetrieverInterface[];
retrieverPrompts?: PromptTemplate[];
defaults?: MultiRetrievalDefaults;
multiRetrievalChainOpts?: Omit<MultiRouteChainInput, "defaultChain">;
retrievalQAChainOpts?: Partial<Omit<RetrievalQAChainInput, "retriever" | "combineDocumentsChain">> & {
prompt?: PromptTemplate;
};
}): MultiRetrievalQAChain;
_chainType(): string;
}