agsamantha/node_modules/langchain/dist/embeddings/cache_backed.d.ts

102 lines
3.7 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { type EmbeddingsInterface, Embeddings } from "@langchain/core/embeddings";
import { BaseStore } from "@langchain/core/stores";
import { AsyncCallerParams } from "@langchain/core/utils/async_caller";
/**
* Interface for the fields required to initialize an instance of the
* CacheBackedEmbeddings class.
*/
export interface CacheBackedEmbeddingsFields extends AsyncCallerParams {
underlyingEmbeddings: EmbeddingsInterface;
documentEmbeddingStore: BaseStore<string, number[]>;
}
/**
* Interface for caching results from embedding models.
*
* The interface allows works with any store that implements
* the abstract store interface accepting keys of type str and values of list of
* floats.
*
* If need be, the interface can be extended to accept other implementations
* of the value serializer and deserializer, as well as the key encoder.
* @example
* ```typescript
* const underlyingEmbeddings = new OpenAIEmbeddings();
*
* const cacheBackedEmbeddings = CacheBackedEmbeddings.fromBytesStore(
* underlyingEmbeddings,
* new ConvexKVStore({ ctx }),
* {
* namespace: underlyingEmbeddings.modelName,
* },
* );
*
* const loader = new TextLoader("./state_of_the_union.txt");
* const rawDocuments = await loader.load();
* const splitter = new RecursiveCharacterTextSplitter({
* chunkSize: 1000,
* chunkOverlap: 0,
* });
* const documents = await splitter.splitDocuments(rawDocuments);
*
* let time = Date.now();
* const vectorstore = await ConvexVectorStore.fromDocuments(
* documents,
* cacheBackedEmbeddings,
* { ctx },
* );
* console.log(`Initial creation time: ${Date.now() - time}ms`);
*
* time = Date.now();
* const vectorstore2 = await ConvexVectorStore.fromDocuments(
* documents,
* cacheBackedEmbeddings,
* { ctx },
* );
* console.log(`Cached creation time: ${Date.now() - time}ms`);
*
* ```
*/
export declare class CacheBackedEmbeddings extends Embeddings {
protected underlyingEmbeddings: EmbeddingsInterface;
protected documentEmbeddingStore: BaseStore<string, number[]>;
constructor(fields: CacheBackedEmbeddingsFields);
/**
* Embed query text.
*
* This method does not support caching at the moment.
*
* Support for caching queries is easy to implement, but might make
* sense to hold off to see the most common patterns.
*
* If the cache has an eviction policy, we may need to be a bit more careful
* about sharing the cache between documents and queries. Generally,
* one is OK evicting query caches, but document caches should be kept.
*
* @param document The text to embed.
* @returns The embedding for the given text.
*/
embedQuery(document: string): Promise<number[]>;
/**
* Embed a list of texts.
*
* The method first checks the cache for the embeddings.
* If the embeddings are not found, the method uses the underlying embedder
* to embed the documents and stores the results in the cache.
*
* @param documents
* @returns A list of embeddings for the given texts.
*/
embedDocuments(documents: string[]): Promise<number[][]>;
/**
* Create a new CacheBackedEmbeddings instance from another embeddings instance
* and a storage instance.
* @param underlyingEmbeddings Embeddings used to populate the cache for new documents.
* @param documentEmbeddingStore Stores raw document embedding values. Keys are hashes of the document content.
* @param options.namespace Optional namespace for store keys.
* @returns A new CacheBackedEmbeddings instance.
*/
static fromBytesStore(underlyingEmbeddings: EmbeddingsInterface, documentEmbeddingStore: BaseStore<string, Uint8Array>, options?: {
namespace?: string;
}): CacheBackedEmbeddings;
}