78 lines
3.4 KiB
TypeScript
78 lines
3.4 KiB
TypeScript
|
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
|
||
|
import { ChainValues } from "@langchain/core/utils/types";
|
||
|
import { CallbackManagerForChainRun, Callbacks, BaseCallbackConfig } from "@langchain/core/callbacks/manager";
|
||
|
import { PairwiseStringEvaluator, PairwiseStringEvaluatorArgs, StringEvaluator, StringEvaluatorArgs } from "../base.js";
|
||
|
/**
|
||
|
*
|
||
|
* Embedding Distance Metric.
|
||
|
*
|
||
|
* COSINE: Cosine distance metric.
|
||
|
* EUCLIDEAN: Euclidean distance metric.
|
||
|
* MANHATTAN: Manhattan distance metric.
|
||
|
* CHEBYSHEV: Chebyshev distance metric.
|
||
|
* HAMMING: Hamming distance metric.
|
||
|
*/
|
||
|
export type EmbeddingDistanceType = "cosine" | "euclidean" | "manhattan" | "chebyshev";
|
||
|
/**
|
||
|
* Embedding Distance Evaluation Chain Input.
|
||
|
*/
|
||
|
export interface EmbeddingDistanceEvalChainInput {
|
||
|
/**
|
||
|
* The embedding objects to vectorize the outputs.
|
||
|
*/
|
||
|
embedding?: EmbeddingsInterface;
|
||
|
/**
|
||
|
* The distance metric to use
|
||
|
* for comparing the embeddings.
|
||
|
*/
|
||
|
distanceMetric?: EmbeddingDistanceType;
|
||
|
}
|
||
|
type VectorFunction = (xVector: number[], yVector: number[]) => number;
|
||
|
/**
|
||
|
* Get the distance function for the given distance type.
|
||
|
* @param distance The distance type.
|
||
|
* @return The distance function.
|
||
|
*/
|
||
|
export declare function getDistanceCalculationFunction(distanceType: EmbeddingDistanceType): VectorFunction;
|
||
|
/**
|
||
|
* Compute the score based on the distance metric.
|
||
|
* @param vectors The input vectors.
|
||
|
* @param distanceMetric The distance metric.
|
||
|
* @return The computed score.
|
||
|
*/
|
||
|
export declare function computeEvaluationScore(vectors: number[][], distanceMetric: EmbeddingDistanceType): number;
|
||
|
/**
|
||
|
* Use embedding distances to score semantic difference between
|
||
|
* a prediction and reference.
|
||
|
*/
|
||
|
export declare class EmbeddingDistanceEvalChain extends StringEvaluator implements EmbeddingDistanceEvalChainInput {
|
||
|
requiresReference: boolean;
|
||
|
requiresInput: boolean;
|
||
|
outputKey: string;
|
||
|
embedding?: EmbeddingsInterface;
|
||
|
distanceMetric: EmbeddingDistanceType;
|
||
|
constructor(fields: EmbeddingDistanceEvalChainInput);
|
||
|
_chainType(): "embedding_cosine_distance" | "embedding_euclidean_distance" | "embedding_manhattan_distance" | "embedding_chebyshev_distance";
|
||
|
_evaluateStrings(args: StringEvaluatorArgs, config: Callbacks | BaseCallbackConfig | undefined): Promise<ChainValues>;
|
||
|
get inputKeys(): string[];
|
||
|
get outputKeys(): string[];
|
||
|
_call(values: ChainValues, _runManager: CallbackManagerForChainRun | undefined): Promise<ChainValues>;
|
||
|
}
|
||
|
/**
|
||
|
* Use embedding distances to score semantic difference between two predictions.
|
||
|
*/
|
||
|
export declare class PairwiseEmbeddingDistanceEvalChain extends PairwiseStringEvaluator implements EmbeddingDistanceEvalChainInput {
|
||
|
requiresReference: boolean;
|
||
|
requiresInput: boolean;
|
||
|
outputKey: string;
|
||
|
embedding?: EmbeddingsInterface;
|
||
|
distanceMetric: EmbeddingDistanceType;
|
||
|
constructor(fields: EmbeddingDistanceEvalChainInput);
|
||
|
_chainType(): "pairwise_embedding_cosine_distance" | "pairwise_embedding_euclidean_distance" | "pairwise_embedding_manhattan_distance" | "pairwise_embedding_chebyshev_distance";
|
||
|
_evaluateStringPairs(args: PairwiseStringEvaluatorArgs, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;
|
||
|
get inputKeys(): string[];
|
||
|
get outputKeys(): string[];
|
||
|
_call(values: ChainValues, _runManager: CallbackManagerForChainRun | undefined): Promise<ChainValues>;
|
||
|
}
|
||
|
export {};
|