120 lines
4.3 KiB
JavaScript
120 lines
4.3 KiB
JavaScript
|
"use strict";
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.DeepInfraEmbeddings = void 0;
|
||
|
const env_1 = require("@langchain/core/utils/env");
|
||
|
const embeddings_1 = require("@langchain/core/embeddings");
|
||
|
const chunk_array_1 = require("@langchain/core/utils/chunk_array");
|
||
|
/**
|
||
|
* The default model name to use for generating embeddings.
|
||
|
*/
|
||
|
const DEFAULT_MODEL_NAME = "sentence-transformers/clip-ViT-B-32";
|
||
|
/**
|
||
|
* The default batch size to use for generating embeddings.
|
||
|
* This is limited by the DeepInfra API to a maximum of 1024.
|
||
|
*/
|
||
|
const DEFAULT_BATCH_SIZE = 1024;
|
||
|
/**
|
||
|
* Environment variable name for the DeepInfra API token.
|
||
|
*/
|
||
|
const API_TOKEN_ENV_VAR = "DEEPINFRA_API_TOKEN";
|
||
|
/**
|
||
|
* A class for generating embeddings using the DeepInfra API.
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* // Embed a query using the DeepInfraEmbeddings class
|
||
|
* const model = new DeepInfraEmbeddings();
|
||
|
* const res = await model.embedQuery(
|
||
|
* "What would be a good company name for a company that makes colorful socks?",
|
||
|
* );
|
||
|
* console.log({ res });
|
||
|
* ```
|
||
|
*/
|
||
|
class DeepInfraEmbeddings extends embeddings_1.Embeddings {
|
||
|
/**
|
||
|
* Constructor for the DeepInfraEmbeddings class.
|
||
|
* @param fields - An optional object with properties to configure the instance.
|
||
|
*/
|
||
|
constructor(fields) {
|
||
|
const fieldsWithDefaults = {
|
||
|
modelName: DEFAULT_MODEL_NAME,
|
||
|
batchSize: DEFAULT_BATCH_SIZE,
|
||
|
...fields,
|
||
|
};
|
||
|
super(fieldsWithDefaults);
|
||
|
Object.defineProperty(this, "apiToken", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "batchSize", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "modelName", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
const apiKey = fieldsWithDefaults?.apiToken || (0, env_1.getEnvironmentVariable)(API_TOKEN_ENV_VAR);
|
||
|
if (!apiKey) {
|
||
|
throw new Error("DeepInfra API token not found");
|
||
|
}
|
||
|
this.modelName = fieldsWithDefaults?.modelName ?? this.modelName;
|
||
|
this.batchSize = fieldsWithDefaults?.batchSize ?? this.batchSize;
|
||
|
this.apiToken = apiKey;
|
||
|
}
|
||
|
/**
|
||
|
* Generates embeddings for an array of texts.
|
||
|
* @param inputs - An array of strings to generate embeddings for.
|
||
|
* @returns A Promise that resolves to an array of embeddings.
|
||
|
*/
|
||
|
async embedDocuments(inputs) {
|
||
|
const batches = (0, chunk_array_1.chunkArray)(inputs, this.batchSize);
|
||
|
const batchRequests = batches.map((batch) => this.embeddingWithRetry({
|
||
|
inputs: batch,
|
||
|
}));
|
||
|
const batchResponses = await Promise.all(batchRequests);
|
||
|
const out = [];
|
||
|
for (let i = 0; i < batchResponses.length; i += 1) {
|
||
|
const batch = batches[i];
|
||
|
const { embeddings } = batchResponses[i];
|
||
|
for (let j = 0; j < batch.length; j += 1) {
|
||
|
out.push(embeddings[j]);
|
||
|
}
|
||
|
}
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Generates an embedding for a single text.
|
||
|
* @param text - A string to generate an embedding for.
|
||
|
* @returns A Promise that resolves to an array of numbers representing the embedding.
|
||
|
*/
|
||
|
async embedQuery(text) {
|
||
|
const { embeddings } = await this.embeddingWithRetry({
|
||
|
inputs: [text],
|
||
|
});
|
||
|
return embeddings[0];
|
||
|
}
|
||
|
/**
|
||
|
* Generates embeddings with retry capabilities.
|
||
|
* @param request - An object containing the request parameters for generating embeddings.
|
||
|
* @returns A Promise that resolves to the API response.
|
||
|
*/
|
||
|
async embeddingWithRetry(request) {
|
||
|
const response = await this.caller.call(() => fetch(`https://api.deepinfra.com/v1/inference/${this.modelName}`, {
|
||
|
method: "POST",
|
||
|
headers: {
|
||
|
Authorization: `Bearer ${this.apiToken}`,
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
body: JSON.stringify(request),
|
||
|
}).then((res) => res.json()));
|
||
|
return response;
|
||
|
}
|
||
|
}
|
||
|
exports.DeepInfraEmbeddings = DeepInfraEmbeddings;
|