agsamantha/node_modules/@langchain/community/dist/embeddings/tencent_hunyuan/base.cjs

107 lines
4.2 KiB
JavaScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.TencentHunyuanEmbeddings = void 0;
const env_1 = require("@langchain/core/utils/env");
const embeddings_1 = require("@langchain/core/embeddings");
/**
* Class for generating embeddings using the Tencent Hunyuan API.
*/
class TencentHunyuanEmbeddings extends embeddings_1.Embeddings {
constructor(fields) {
super(fields ?? {});
Object.defineProperty(this, "tencentSecretId", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "tencentSecretKey", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "host", {
enumerable: true,
configurable: true,
writable: true,
value: "hunyuan.tencentcloudapi.com"
});
Object.defineProperty(this, "sign", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.tencentSecretId =
fields?.tencentSecretId ?? (0, env_1.getEnvironmentVariable)("TENCENT_SECRET_ID");
if (!this.tencentSecretId) {
throw new Error("Tencent SecretID not found");
}
this.tencentSecretKey =
fields?.tencentSecretKey ?? (0, env_1.getEnvironmentVariable)("TENCENT_SECRET_KEY");
if (!this.tencentSecretKey) {
throw new Error("Tencent SecretKey not found");
}
this.host = fields?.host ?? this.host;
if (!fields?.sign) {
throw new Error("Sign method undefined");
}
this.sign = fields?.sign;
}
/**
* Private method to make a request to the TogetherAI API to generate
* embeddings. Handles the retry logic and returns the response from the API.
* @param {string} input The input text to embed.
* @returns Promise that resolves to the response from the API.
* @TODO Figure out return type and statically type it.
*/
async embeddingWithRetry(input) {
const request = { Input: input };
const timestamp = Math.trunc(Date.now() / 1000);
const headers = {
"Content-Type": "application/json",
"X-TC-Action": "GetEmbedding",
"X-TC-Version": "2023-09-01",
"X-TC-Timestamp": timestamp.toString(),
Authorization: "",
};
headers.Authorization = this.sign(this.host, request, timestamp, this.tencentSecretId ?? "", this.tencentSecretKey ?? "", headers);
return this.caller.call(async () => {
const response = await fetch(`https://${this.host}`, {
headers,
method: "POST",
body: JSON.stringify(request),
});
if (response.ok) {
return response.json();
}
throw new Error(`Error getting embeddings from Tencent Hunyuan. ${JSON.stringify(await response.json(), null, 2)}`);
});
}
/**
* Method to generate an embedding for a single document. Calls the
* embeddingWithRetry method with the document as the input.
* @param {string} text Document to generate an embedding for.
* @returns {Promise<number[]>} Promise that resolves to an embedding for the document.
*/
async embedQuery(text) {
const { Response } = await this.embeddingWithRetry(text);
if (Response?.Error?.Message) {
throw new Error(`[${Response.RequestId}] ${Response.Error.Message}`);
}
return Response.Data[0].Embedding;
}
/**
* Method that takes an array of documents as input and returns a promise
* that resolves to a 2D array of embeddings for each document. It calls
* the embedQuery method for each document in the array.
* @param documents Array of documents for which to generate embeddings.
* @returns Promise that resolves to a 2D array of embeddings for each input document.
*/
embedDocuments(documents) {
return Promise.all(documents.map((doc) => this.embedQuery(doc)));
}
}
exports.TencentHunyuanEmbeddings = TencentHunyuanEmbeddings;