agsamantha/node_modules/@langchain/community/dist/vectorstores/clickhouse.js

260 lines
10 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import * as uuid from "uuid";
import { createClient } from "@clickhouse/client";
import { format } from "mysql2";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
/**
* Class for interacting with the ClickHouse database. It extends the
* VectorStore class and provides methods for adding vectors and
* documents, searching for similar vectors, and creating instances from
* texts or documents.
*/
export class ClickHouseStore extends VectorStore {
_vectorstoreType() {
return "clickhouse";
}
constructor(embeddings, args) {
super(embeddings, args);
Object.defineProperty(this, "client", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "indexType", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "indexParam", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "indexQueryParams", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "columnMap", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "database", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "table", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "isInitialized", {
enumerable: true,
configurable: true,
writable: true,
value: false
});
this.indexType = args.indexType || "annoy";
this.indexParam = args.indexParam || { L2Distance: 100 };
this.indexQueryParams = args.indexQueryParams || {};
this.columnMap = args.columnMap || {
id: "id",
document: "document",
embedding: "embedding",
metadata: "metadata",
uuid: "uuid",
};
this.database = args.database || "default";
this.table = args.table || "vector_table";
this.client = createClient({
host: `${args.protocol ?? "https://"}${args.host}:${args.port}`,
username: args.username,
password: args.password,
session_id: uuid.v4(),
});
}
/**
* Method to add vectors to the ClickHouse database.
* @param vectors The vectors to add.
* @param documents The documents associated with the vectors.
* @returns Promise that resolves when the vectors have been added.
*/
async addVectors(vectors, documents) {
if (vectors.length === 0) {
return;
}
if (!this.isInitialized) {
await this.initialize(vectors[0].length);
}
const queryStr = this.buildInsertQuery(vectors, documents);
await this.client.exec({ query: queryStr });
}
/**
* Method to add documents to the ClickHouse database.
* @param documents The documents to add.
* @returns Promise that resolves when the documents have been added.
*/
async addDocuments(documents) {
return this.addVectors(await this.embeddings.embedDocuments(documents.map((d) => d.pageContent)), documents);
}
/**
* Method to search for vectors that are similar to a given query vector.
* @param query The query vector.
* @param k The number of similar vectors to return.
* @param filter Optional filter for the search results.
* @returns Promise that resolves with an array of tuples, each containing a Document and a score.
*/
async similaritySearchVectorWithScore(query, k, filter) {
if (!this.isInitialized) {
await this.initialize(query.length);
}
const queryStr = this.buildSearchQuery(query, k, filter);
const queryResultSet = await this.client.query({ query: queryStr });
const queryResult = await queryResultSet.json();
const result = queryResult.data.map((item) => [
new Document({ pageContent: item.document, metadata: item.metadata }),
item.dist,
]);
return result;
}
/**
* Static method to create an instance of ClickHouseStore from texts.
* @param texts The texts to use.
* @param metadatas The metadata associated with the texts.
* @param embeddings The embeddings to use.
* @param args The arguments for the ClickHouseStore.
* @returns Promise that resolves with a new instance of ClickHouseStore.
*/
static async fromTexts(texts, metadatas, embeddings, args) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return ClickHouseStore.fromDocuments(docs, embeddings, args);
}
/**
* Static method to create an instance of ClickHouseStore from documents.
* @param docs The documents to use.
* @param embeddings The embeddings to use.
* @param args The arguments for the ClickHouseStore.
* @returns Promise that resolves with a new instance of ClickHouseStore.
*/
static async fromDocuments(docs, embeddings, args) {
const instance = new this(embeddings, args);
await instance.addDocuments(docs);
return instance;
}
/**
* Static method to create an instance of ClickHouseStore from an existing
* index.
* @param embeddings The embeddings to use.
* @param args The arguments for the ClickHouseStore.
* @returns Promise that resolves with a new instance of ClickHouseStore.
*/
static async fromExistingIndex(embeddings, args) {
const instance = new this(embeddings, args);
await instance.initialize();
return instance;
}
/**
* Method to initialize the ClickHouse database.
* @param dimension Optional dimension of the vectors.
* @returns Promise that resolves when the database has been initialized.
*/
async initialize(dimension) {
const dim = dimension ?? (await this.embeddings.embedQuery("test")).length;
const indexParamStr = this.indexParam
? Object.entries(this.indexParam)
.map(([key, value]) => `'${key}', ${value}`)
.join(", ")
: "";
const query = `
CREATE TABLE IF NOT EXISTS ${this.database}.${this.table}(
${this.columnMap.id} Nullable(String),
${this.columnMap.document} Nullable(String),
${this.columnMap.embedding} Array(Float32),
${this.columnMap.metadata} JSON,
${this.columnMap.uuid} UUID DEFAULT generateUUIDv4(),
CONSTRAINT cons_vec_len CHECK length(${this.columnMap.embedding}) = ${dim},
INDEX vec_idx ${this.columnMap.embedding} TYPE ${this.indexType}(${indexParamStr}) GRANULARITY 1000
) ENGINE = MergeTree ORDER BY ${this.columnMap.uuid} SETTINGS index_granularity = 8192;`;
await this.client.exec({
query,
clickhouse_settings: {
allow_experimental_object_type: 1,
allow_experimental_annoy_index: 1,
},
});
this.isInitialized = true;
}
/**
* Method to build an SQL query for inserting vectors and documents into
* the ClickHouse database.
* @param vectors The vectors to insert.
* @param documents The documents to insert.
* @returns The SQL query string.
*/
buildInsertQuery(vectors, documents) {
const columnsStr = Object.values(Object.fromEntries(Object.entries(this.columnMap).filter(([key]) => key !== this.columnMap.uuid))).join(", ");
const placeholders = vectors.map(() => "(?, ?, ?, ?)").join(", ");
const values = [];
for (let i = 0; i < vectors.length; i += 1) {
const vector = vectors[i];
const document = documents[i];
values.push(uuid.v4(), this.escapeString(document.pageContent), JSON.stringify(vector), JSON.stringify(document.metadata));
}
const insertQueryStr = `
INSERT INTO TABLE ${this.database}.${this.table}(${columnsStr})
VALUES ${placeholders}
`;
const insertQuery = format(insertQueryStr, values);
return insertQuery;
}
escapeString(str) {
return str.replace(/\\/g, "\\\\").replace(/'/g, "\\'");
}
/**
* Method to build an SQL query for searching for similar vectors in the
* ClickHouse database.
* @param query The query vector.
* @param k The number of similar vectors to return.
* @param filter Optional filter for the search results.
* @returns The SQL query string.
*/
buildSearchQuery(query, k, filter) {
const order = "ASC";
const whereStr = filter ? `PREWHERE ${filter.whereStr}` : "";
const placeholders = query.map(() => "?").join(", ");
const settingStrings = [];
if (this.indexQueryParams) {
for (const [key, value] of Object.entries(this.indexQueryParams)) {
settingStrings.push(`SETTING ${key}=${value}`);
}
}
const searchQueryStr = `
SELECT ${this.columnMap.document} AS document, ${this.columnMap.metadata} AS metadata, dist
FROM ${this.database}.${this.table}
${whereStr}
ORDER BY L2Distance(${this.columnMap.embedding}, [${placeholders}]) AS dist ${order}
LIMIT ${k} ${settingStrings.join(" ")}
`;
// Format the query with actual values
const searchQuery = format(searchQueryStr, query);
return searchQuery;
}
}