agsamantha/node_modules/@langchain/community/dist/vectorstores/faiss.cjs

395 lines
16 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
"use strict";
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
var desc = Object.getOwnPropertyDescriptor(m, k);
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
desc = { enumerable: true, get: function() { return m[k]; } };
}
Object.defineProperty(o, k2, desc);
}) : (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
o[k2] = m[k];
}));
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
Object.defineProperty(o, "default", { enumerable: true, value: v });
}) : function(o, v) {
o["default"] = v;
});
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
__setModuleDefault(result, mod);
return result;
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.FaissStore = void 0;
const uuid = __importStar(require("uuid"));
const vectorstores_1 = require("@langchain/core/vectorstores");
const documents_1 = require("@langchain/core/documents");
const in_memory_js_1 = require("../stores/doc/in_memory.cjs");
/**
* A class that wraps the FAISS (Facebook AI Similarity Search) vector
* database for efficient similarity search and clustering of dense
* vectors.
*/
class FaissStore extends vectorstores_1.SaveableVectorStore {
_vectorstoreType() {
return "faiss";
}
getMapping() {
return this._mapping;
}
getDocstore() {
return this.docstore;
}
constructor(embeddings, args) {
super(embeddings, args);
Object.defineProperty(this, "_index", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "_mapping", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "docstore", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "args", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.args = args;
this._index = args.index;
this._mapping = args.mapping ?? {};
this.embeddings = embeddings;
this.docstore = args?.docstore ?? new in_memory_js_1.SynchronousInMemoryDocstore();
}
/**
* Adds an array of Document objects to the store.
* @param documents An array of Document objects.
* @returns A Promise that resolves when the documents have been added.
*/
async addDocuments(documents, options) {
const texts = documents.map(({ pageContent }) => pageContent);
return this.addVectors(await this.embeddings.embedDocuments(texts), documents, options);
}
get index() {
if (!this._index) {
throw new Error("Vector store not initialised yet. Try calling `fromTexts`, `fromDocuments` or `fromIndex` first.");
}
return this._index;
}
set index(index) {
this._index = index;
}
/**
* Adds an array of vectors and their corresponding Document objects to
* the store.
* @param vectors An array of vectors.
* @param documents An array of Document objects corresponding to the vectors.
* @returns A Promise that resolves with an array of document IDs when the vectors and documents have been added.
*/
async addVectors(vectors, documents, options) {
if (vectors.length === 0) {
return [];
}
if (vectors.length !== documents.length) {
throw new Error(`Vectors and documents must have the same length`);
}
const dv = vectors[0].length;
if (!this._index) {
const { IndexFlatL2 } = await FaissStore.importFaiss();
this._index = new IndexFlatL2(dv);
}
const d = this.index.getDimension();
if (dv !== d) {
throw new Error(`Vectors must have the same length as the number of dimensions (${d})`);
}
const docstoreSize = this.index.ntotal();
const documentIds = options?.ids ?? documents.map(() => uuid.v4());
for (let i = 0; i < vectors.length; i += 1) {
const documentId = documentIds[i];
const id = docstoreSize + i;
this.index.add(vectors[i]);
this._mapping[id] = documentId;
this.docstore.add({ [documentId]: documents[i] });
}
return documentIds;
}
/**
* Performs a similarity search in the vector store using a query vector
* and returns the top k results along with their scores.
* @param query A query vector.
* @param k The number of top results to return.
* @returns A Promise that resolves with an array of tuples, each containing a Document and its corresponding score.
*/
async similaritySearchVectorWithScore(query, k) {
const d = this.index.getDimension();
if (query.length !== d) {
throw new Error(`Query vector must have the same length as the number of dimensions (${d})`);
}
if (k > this.index.ntotal()) {
const total = this.index.ntotal();
console.warn(`k (${k}) is greater than the number of elements in the index (${total}), setting k to ${total}`);
// eslint-disable-next-line no-param-reassign
k = total;
}
const result = this.index.search(query, k);
return result.labels.map((id, index) => {
const uuid = this._mapping[id];
return [this.docstore.search(uuid), result.distances[index]];
});
}
/**
* Saves the current state of the FaissStore to a specified directory.
* @param directory The directory to save the state to.
* @returns A Promise that resolves when the state has been saved.
*/
async save(directory) {
const fs = await import("node:fs/promises");
const path = await import("node:path");
await fs.mkdir(directory, { recursive: true });
await Promise.all([
this.index.write(path.join(directory, "faiss.index")),
await fs.writeFile(path.join(directory, "docstore.json"), JSON.stringify([
Array.from(this.docstore._docs.entries()),
this._mapping,
])),
]);
}
/**
* Method to delete documents.
* @param params Object containing the IDs of the documents to delete.
* @returns A promise that resolves when the deletion is complete.
*/
async delete(params) {
const documentIds = params.ids;
if (documentIds == null) {
throw new Error("No documentIds provided to delete.");
}
const mappings = new Map(Object.entries(this._mapping).map(([key, value]) => [
parseInt(key, 10),
value,
]));
const reversedMappings = new Map(Array.from(mappings, (entry) => [entry[1], entry[0]]));
const missingIds = new Set(documentIds.filter((id) => !reversedMappings.has(id)));
if (missingIds.size > 0) {
throw new Error(`Some specified documentIds do not exist in the current store. DocumentIds not found: ${Array.from(missingIds).join(", ")}`);
}
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const indexIdToDelete = documentIds.map((id) => reversedMappings.get(id));
// remove from index
this.index.removeIds(indexIdToDelete);
// remove from docstore
documentIds.forEach((id) => {
this.docstore._docs.delete(id);
});
// remove from mappings
indexIdToDelete.forEach((id) => {
mappings.delete(id);
});
this._mapping = { ...Array.from(mappings.values()) };
}
/**
* Merges the current FaissStore with another FaissStore.
* @param targetIndex The FaissStore to merge with.
* @returns A Promise that resolves with an array of document IDs when the merge is complete.
*/
async mergeFrom(targetIndex) {
const targetIndexDimensions = targetIndex.index.getDimension();
if (!this._index) {
const { IndexFlatL2 } = await FaissStore.importFaiss();
this._index = new IndexFlatL2(targetIndexDimensions);
}
const d = this.index.getDimension();
if (targetIndexDimensions !== d) {
throw new Error("Cannot merge indexes with different dimensions.");
}
const targetMapping = targetIndex.getMapping();
const targetDocstore = targetIndex.getDocstore();
const targetSize = targetIndex.index.ntotal();
const documentIds = [];
const currentDocstoreSize = this.index.ntotal();
for (let i = 0; i < targetSize; i += 1) {
const targetId = targetMapping[i];
documentIds.push(targetId);
const targetDocument = targetDocstore.search(targetId);
const id = currentDocstoreSize + i;
this._mapping[id] = targetId;
this.docstore.add({ [targetId]: targetDocument });
}
this.index.mergeFrom(targetIndex.index);
return documentIds;
}
/**
* Loads a FaissStore from a specified directory.
* @param directory The directory to load the FaissStore from.
* @param embeddings An Embeddings object.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static async load(directory, embeddings) {
const fs = await import("node:fs/promises");
const path = await import("node:path");
const readStore = (directory) => fs
.readFile(path.join(directory, "docstore.json"), "utf8")
.then(JSON.parse);
const readIndex = async (directory) => {
const { IndexFlatL2 } = await this.importFaiss();
return IndexFlatL2.read(path.join(directory, "faiss.index"));
};
const [[docstoreFiles, mapping], index] = await Promise.all([
readStore(directory),
readIndex(directory),
]);
const docstore = new in_memory_js_1.SynchronousInMemoryDocstore(new Map(docstoreFiles));
return new this(embeddings, { docstore, index, mapping });
}
static async loadFromPython(directory, embeddings) {
const fs = await import("node:fs/promises");
const path = await import("node:path");
const { Parser, NameRegistry } = await this.importPickleparser();
class PyDocument extends Map {
toDocument() {
return new documents_1.Document({
pageContent: this.get("page_content"),
metadata: this.get("metadata"),
});
}
}
class PyInMemoryDocstore {
constructor() {
Object.defineProperty(this, "_dict", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
}
toInMemoryDocstore() {
const s = new in_memory_js_1.SynchronousInMemoryDocstore();
for (const [key, value] of Object.entries(this._dict)) {
s._docs.set(key, value.toDocument());
}
return s;
}
}
const readStore = async (directory) => {
const pkl = await fs.readFile(path.join(directory, "index.pkl"), "binary");
const buffer = Buffer.from(pkl, "binary");
const registry = new NameRegistry()
.register("langchain.docstore.in_memory", "InMemoryDocstore", PyInMemoryDocstore)
.register("langchain_community.docstore.in_memory", "InMemoryDocstore", PyInMemoryDocstore)
.register("langchain.schema", "Document", PyDocument)
.register("langchain.docstore.document", "Document", PyDocument)
.register("langchain.schema.document", "Document", PyDocument)
.register("langchain_core.documents.base", "Document", PyDocument)
.register("pathlib", "WindowsPath", (...args) => args.join("\\"))
.register("pathlib", "PosixPath", (...args) => args.join("/"));
const pickleparser = new Parser({
nameResolver: registry,
});
const [rawStore, mapping] = pickleparser.parse(buffer);
const store = rawStore.toInMemoryDocstore();
return { store, mapping };
};
const readIndex = async (directory) => {
const { IndexFlatL2 } = await this.importFaiss();
return IndexFlatL2.read(path.join(directory, "index.faiss"));
};
const [store, index] = await Promise.all([
readStore(directory),
readIndex(directory),
]);
return new this(embeddings, {
docstore: store.store,
index,
mapping: store.mapping,
});
}
/**
* Creates a new FaissStore from an array of texts, their corresponding
* metadata, and an Embeddings object.
* @param texts An array of texts.
* @param metadatas An array of metadata corresponding to the texts, or a single metadata object to be used for all texts.
* @param embeddings An Embeddings object.
* @param dbConfig An optional configuration object for the document store.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new documents_1.Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return this.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Creates a new FaissStore from an array of Document objects and an
* Embeddings object.
* @param docs An array of Document objects.
* @param embeddings An Embeddings object.
* @param dbConfig An optional configuration object for the document store.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static async fromDocuments(docs, embeddings, dbConfig) {
const args = {
docstore: dbConfig?.docstore,
};
const instance = new this(embeddings, args);
await instance.addDocuments(docs);
return instance;
}
/**
* Creates a new FaissStore from an existing FaissStore and an Embeddings
* object.
* @param targetIndex An existing FaissStore.
* @param embeddings An Embeddings object.
* @param dbConfig An optional configuration object for the document store.
* @returns A Promise that resolves with a new FaissStore instance.
*/
static async fromIndex(targetIndex, embeddings, dbConfig) {
const args = {
docstore: dbConfig?.docstore,
};
const instance = new this(embeddings, args);
await instance.mergeFrom(targetIndex);
return instance;
}
static async importFaiss() {
try {
const { default: { IndexFlatL2 }, } = await import("faiss-node");
return { IndexFlatL2 };
// eslint-disable-next-line @typescript-eslint/no-explicit-any
}
catch (err) {
throw new Error(`Could not import faiss-node. Please install faiss-node as a dependency with, e.g. \`npm install -S faiss-node\`.\n\nError: ${err?.message}`);
}
}
static async importPickleparser() {
try {
const { default: { Parser, NameRegistry }, } = await import("pickleparser");
return { Parser, NameRegistry };
// eslint-disable-next-line @typescript-eslint/no-explicit-any
}
catch (err) {
throw new Error(`Could not import pickleparser. Please install pickleparser as a dependency with, e.g. \`npm install -S pickleparser\`.\n\nError: ${err?.message}`);
}
}
}
exports.FaissStore = FaissStore;