agsamantha/node_modules/@langchain/community/dist/vectorstores/opensearch.d.ts

177 lines
7.4 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { Client } from "@opensearch-project/opensearch";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
type OpenSearchEngine = "nmslib" | "hnsw";
type OpenSearchSpaceType = "l2" | "cosinesimil" | "ip";
/**
* Interface defining the options for vector search in OpenSearch. It
* includes the engine type, space type, and parameters for the HNSW
* algorithm.
*/
interface VectorSearchOptions {
readonly engine?: OpenSearchEngine;
readonly spaceType?: OpenSearchSpaceType;
readonly m?: number;
readonly efConstruction?: number;
readonly efSearch?: number;
readonly numberOfShards?: number;
readonly numberOfReplicas?: number;
}
/**
* Interface defining the arguments required to create an instance of the
* OpenSearchVectorStore class. It includes the OpenSearch client, index
* name, and vector search options.
*/
export interface OpenSearchClientArgs {
readonly client: Client;
readonly vectorFieldName?: string;
readonly textFieldName?: string;
readonly metadataFieldName?: string;
readonly service?: "es" | "aoss";
readonly indexName?: string;
readonly vectorSearchOptions?: VectorSearchOptions;
}
/**
* Type alias for an object. It's used to define filters for OpenSearch
* queries.
*/
type OpenSearchFilter = {
[key: string]: FilterTypeValue | (string | number)[] | string | number;
};
/**
* FilterTypeValue for OpenSearch queries.
*/
interface FilterTypeValue {
exists?: boolean;
fuzzy?: string;
ids?: string[];
prefix?: string;
gte?: number;
gt?: number;
lte?: number;
lt?: number;
regexp?: string;
terms_set?: Record<string, any>;
wildcard?: string;
}
/**
* Class that provides a wrapper around the OpenSearch service for vector
* search. It provides methods for adding documents and vectors to the
* OpenSearch index, searching for similar vectors, and managing the
* OpenSearch index.
*/
export declare class OpenSearchVectorStore extends VectorStore {
FilterType: OpenSearchFilter;
private readonly client;
private readonly indexName;
private readonly isAoss;
private readonly engine;
private readonly spaceType;
private readonly efConstruction;
private readonly efSearch;
private readonly numberOfShards;
private readonly numberOfReplicas;
private readonly m;
private readonly vectorFieldName;
private readonly textFieldName;
private readonly metadataFieldName;
_vectorstoreType(): string;
constructor(embeddings: EmbeddingsInterface, args: OpenSearchClientArgs);
/**
* Method to add documents to the OpenSearch index. It first converts the
* documents to vectors using the embeddings, then adds the vectors to the
* index.
* @param documents The documents to be added to the OpenSearch index.
* @returns Promise resolving to void.
*/
addDocuments(documents: Document[]): Promise<void>;
/**
* Method to add vectors to the OpenSearch index. It ensures the index
* exists, then adds the vectors and associated documents to the index.
* @param vectors The vectors to be added to the OpenSearch index.
* @param documents The documents associated with the vectors.
* @param options Optional parameter that can contain the IDs for the documents.
* @returns Promise resolving to void.
*/
addVectors(vectors: number[][], documents: Document[], options?: {
ids?: string[];
}): Promise<void>;
/**
* Method to perform a similarity search on the OpenSearch index using a
* query vector. It returns the k most similar documents and their scores.
* @param query The query vector.
* @param k The number of similar documents to return.
* @param filter Optional filter for the OpenSearch query.
* @returns Promise resolving to an array of tuples, each containing a Document and its score.
*/
similaritySearchVectorWithScore(query: number[], k: number, filter?: OpenSearchFilter | undefined): Promise<[Document, number][]>;
/**
* Static method to create a new OpenSearchVectorStore from an array of
* texts, their metadata, embeddings, and OpenSearch client arguments.
* @param texts The texts to be converted into documents and added to the OpenSearch index.
* @param metadatas The metadata associated with the texts. Can be an array of objects or a single object.
* @param embeddings The embeddings used to convert the texts into vectors.
* @param args The OpenSearch client arguments.
* @returns Promise resolving to a new instance of OpenSearchVectorStore.
*/
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, args: OpenSearchClientArgs): Promise<OpenSearchVectorStore>;
/**
* Static method to create a new OpenSearchVectorStore from an array of
* Documents, embeddings, and OpenSearch client arguments.
* @param docs The documents to be added to the OpenSearch index.
* @param embeddings The embeddings used to convert the documents into vectors.
* @param dbConfig The OpenSearch client arguments.
* @returns Promise resolving to a new instance of OpenSearchVectorStore.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: OpenSearchClientArgs): Promise<OpenSearchVectorStore>;
/**
* Static method to create a new OpenSearchVectorStore from an existing
* OpenSearch index, embeddings, and OpenSearch client arguments.
* @param embeddings The embeddings used to convert the documents into vectors.
* @param dbConfig The OpenSearch client arguments.
* @returns Promise resolving to a new instance of OpenSearchVectorStore.
*/
static fromExistingIndex(embeddings: EmbeddingsInterface, dbConfig: OpenSearchClientArgs): Promise<OpenSearchVectorStore>;
private ensureIndexExists;
/**
* Builds metadata terms for OpenSearch queries.
*
* This function takes a filter object and constructs an array of query terms
* compatible with OpenSearch 2.x. It supports a variety of query types including
* term, terms, terms_set, ids, range, prefix, exists, fuzzy, wildcard, and regexp.
* Reference: https://opensearch.org/docs/latest/query-dsl/term/index/
*
* @param {Filter | null} filter - The filter object used to construct query terms.
* Each key represents a field, and the value specifies the type of query and its parameters.
*
* @returns {Array<Record<string, any>>} An array of OpenSearch query terms.
*
* @example
* // Example filter:
* const filter = {
* status: { "exists": true },
* age: { "gte": 30, "lte": 40 },
* tags: ["tag1", "tag2"],
* description: { "wildcard": "*test*" },
*
* };
*
* // Resulting query terms:
* const queryTerms = buildMetadataTerms(filter);
* // queryTerms would be an array of OpenSearch query objects.
*/
buildMetadataTerms(filter: OpenSearchFilter | undefined): object;
/**
* Method to check if the OpenSearch index exists.
* @returns Promise resolving to a boolean indicating whether the index exists.
*/
doesIndexExist(): Promise<boolean>;
/**
* Method to delete the OpenSearch index if it exists.
* @returns Promise resolving to void.
*/
deleteIfExists(): Promise<void>;
}
export {};