agsamantha/node_modules/@langchain/community/dist/vectorstores/qdrant.js

224 lines
9.5 KiB
JavaScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { QdrantClient } from "@qdrant/js-client-rest";
import { v4 as uuid } from "uuid";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
import { getEnvironmentVariable } from "@langchain/core/utils/env";
const CONTENT_KEY = "content";
const METADATA_KEY = "metadata";
/**
* @deprecated Install and import from @langchain/qdrant instead.
*
* Class that extends the `VectorStore` base class to interact with a
* Qdrant database. It includes methods for adding documents and vectors
* to the Qdrant database, searching for similar vectors, and ensuring the
* existence of a collection in the database.
*/
export class QdrantVectorStore extends VectorStore {
get lc_secrets() {
return {
apiKey: "QDRANT_API_KEY",
url: "QDRANT_URL",
};
}
_vectorstoreType() {
return "qdrant";
}
constructor(embeddings, args) {
super(embeddings, args);
Object.defineProperty(this, "client", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "collectionName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "collectionConfig", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "contentPayloadKey", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "metadataPayloadKey", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
const url = args.url ?? getEnvironmentVariable("QDRANT_URL");
const apiKey = args.apiKey ?? getEnvironmentVariable("QDRANT_API_KEY");
if (!args.client && !url) {
throw new Error("Qdrant client or url address must be set.");
}
this.client =
args.client ||
new QdrantClient({
url,
apiKey,
});
this.collectionName = args.collectionName ?? "documents";
this.collectionConfig = args.collectionConfig;
this.contentPayloadKey = args.contentPayloadKey ?? CONTENT_KEY;
this.metadataPayloadKey = args.metadataPayloadKey ?? METADATA_KEY;
}
/**
* Method to add documents to the Qdrant database. It generates vectors
* from the documents using the `Embeddings` instance and then adds the
* vectors to the database.
* @param documents Array of `Document` instances to be added to the Qdrant database.
* @param documentOptions Optional `QdrantAddDocumentOptions` which has a list of JSON objects for extra querying
* @returns Promise that resolves when the documents have been added to the database.
*/
async addDocuments(documents, documentOptions) {
const texts = documents.map(({ pageContent }) => pageContent);
await this.addVectors(await this.embeddings.embedDocuments(texts), documents, documentOptions);
}
/**
* Method to add vectors to the Qdrant database. Each vector is associated
* with a document, which is stored as the payload for a point in the
* database.
* @param vectors Array of vectors to be added to the Qdrant database.
* @param documents Array of `Document` instances associated with the vectors.
* @param documentOptions Optional `QdrantAddDocumentOptions` which has a list of JSON objects for extra querying
* @returns Promise that resolves when the vectors have been added to the database.
*/
async addVectors(vectors, documents, documentOptions) {
if (vectors.length === 0) {
return;
}
await this.ensureCollection();
const points = vectors.map((embedding, idx) => ({
id: uuid(),
vector: embedding,
payload: {
[this.contentPayloadKey]: documents[idx].pageContent,
[this.metadataPayloadKey]: documents[idx].metadata,
customPayload: documentOptions?.customPayload[idx],
},
}));
try {
await this.client.upsert(this.collectionName, {
wait: true,
points,
});
// eslint-disable-next-line @typescript-eslint/no-explicit-any
}
catch (e) {
const error = new Error(`${e?.status ?? "Undefined error code"} ${e?.message}: ${e?.data?.status?.error}`);
throw error;
}
}
/**
* Method to search for vectors in the Qdrant database that are similar to
* a given query vector. The search results include the score and payload
* (metadata and content) for each similar vector.
* @param query Query vector to search for similar vectors in the Qdrant database.
* @param k Optional number of similar vectors to return. If not specified, all similar vectors are returned.
* @param filter Optional filter to apply to the search results.
* @returns Promise that resolves with an array of tuples, where each tuple includes a `Document` instance and a score for a similar vector.
*/
async similaritySearchVectorWithScore(query, k, filter) {
if (!query) {
return [];
}
await this.ensureCollection();
const results = await this.client.search(this.collectionName, {
vector: query,
limit: k,
filter,
});
const result = results.map((res) => [
new Document({
// eslint-disable-next-line @typescript-eslint/no-explicit-any
metadata: res.payload[this.metadataPayloadKey],
pageContent: res.payload[this.contentPayloadKey],
}),
res.score,
]);
return result;
}
/**
* Method to ensure the existence of a collection in the Qdrant database.
* If the collection does not exist, it is created.
* @returns Promise that resolves when the existence of the collection has been ensured.
*/
async ensureCollection() {
const response = await this.client.getCollections();
const collectionNames = response.collections.map((collection) => collection.name);
if (!collectionNames.includes(this.collectionName)) {
const collectionConfig = this.collectionConfig ?? {
vectors: {
size: (await this.embeddings.embedQuery("test")).length,
distance: "Cosine",
},
};
await this.client.createCollection(this.collectionName, collectionConfig);
}
}
/**
* Static method to create a `QdrantVectorStore` instance from texts. Each
* text is associated with metadata and converted to a `Document`
* instance, which is then added to the Qdrant database.
* @param texts Array of texts to be converted to `Document` instances and added to the Qdrant database.
* @param metadatas Array or single object of metadata to be associated with the texts.
* @param embeddings `Embeddings` instance used to generate vectors from the texts.
* @param dbConfig `QdrantLibArgs` instance specifying the configuration for the Qdrant database.
* @returns Promise that resolves with a new `QdrantVectorStore` instance.
*/
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return QdrantVectorStore.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Static method to create a `QdrantVectorStore` instance from `Document`
* instances. The documents are added to the Qdrant database.
* @param docs Array of `Document` instances to be added to the Qdrant database.
* @param embeddings `Embeddings` instance used to generate vectors from the documents.
* @param dbConfig `QdrantLibArgs` instance specifying the configuration for the Qdrant database.
* @returns Promise that resolves with a new `QdrantVectorStore` instance.
*/
static async fromDocuments(docs, embeddings, dbConfig) {
const instance = new this(embeddings, dbConfig);
if (dbConfig.customPayload) {
const documentOptions = {
customPayload: dbConfig?.customPayload,
};
await instance.addDocuments(docs, documentOptions);
}
else {
await instance.addDocuments(docs);
}
return instance;
}
/**
* Static method to create a `QdrantVectorStore` instance from an existing
* collection in the Qdrant database.
* @param embeddings `Embeddings` instance used to generate vectors from the documents in the collection.
* @param dbConfig `QdrantLibArgs` instance specifying the configuration for the Qdrant database.
* @returns Promise that resolves with a new `QdrantVectorStore` instance.
*/
static async fromExistingCollection(embeddings, dbConfig) {
const instance = new this(embeddings, dbConfig);
await instance.ensureCollection();
return instance;
}
}