agsamantha/node_modules/@langchain/community/dist/vectorstores/vectara.d.ts

187 lines
7 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { Document } from "@langchain/core/documents";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { VectorStore } from "@langchain/core/vectorstores";
import { BaseCallbackConfig, Callbacks } from "@langchain/core/callbacks/manager";
/**
* Interface for the arguments required to initialize a VectaraStore
* instance.
*/
export interface VectaraLibArgs {
customerId: number;
corpusId: number | number[];
apiKey: string;
verbose?: boolean;
source?: string;
}
/**
* Interface for the headers required for Vectara API calls.
*/
interface VectaraCallHeader {
headers: {
"x-api-key": string;
"Content-Type": string;
"customer-id": string;
"X-Source": string;
};
}
/**
* Interface for the file objects to be uploaded to Vectara.
*/
export interface VectaraFile {
blob: Blob;
fileName: string;
}
/**
* Interface for the context configuration used in Vectara API calls.
*/
export interface VectaraContextConfig {
charsBefore?: number;
charsAfter?: number;
sentencesBefore?: number;
sentencesAfter?: number;
startTag?: string;
endTag?: string;
}
export interface MMRConfig {
enabled?: boolean;
mmrTopK?: number;
diversityBias?: number;
}
export interface VectaraSummary {
enabled: boolean;
summarizerPromptName?: string;
maxSummarizedResults: number;
responseLang: string;
}
export interface VectaraFilter extends BaseCallbackConfig {
start?: number;
filter?: string;
lambda?: number;
contextConfig?: VectaraContextConfig;
mmrConfig?: MMRConfig;
}
export declare const DEFAULT_FILTER: VectaraFilter;
interface SummaryResult {
documents: Document[];
scores: number[];
summary: string;
}
export interface VectaraRetrieverInput {
vectara: VectaraStore;
topK: number;
summaryConfig?: VectaraSummary;
callbacks?: Callbacks;
tags?: string[];
metadata?: Record<string, unknown>;
verbose?: boolean;
}
/**
* Class for interacting with the Vectara API. Extends the VectorStore
* class.
*/
export declare class VectaraStore extends VectorStore {
get lc_secrets(): {
[key: string]: string;
};
get lc_aliases(): {
[key: string]: string;
};
FilterType: VectaraFilter;
private apiEndpoint;
private apiKey;
private corpusId;
private customerId;
private verbose;
private source;
private vectaraApiTimeoutSeconds;
_vectorstoreType(): string;
constructor(args: VectaraLibArgs);
/**
* Returns a header for Vectara API calls.
* @returns A Promise that resolves to a VectaraCallHeader object.
*/
getJsonHeader(): Promise<VectaraCallHeader>;
/**
* Throws an error, as this method is not implemented. Use addDocuments
* instead.
* @param _vectors Not used.
* @param _documents Not used.
* @returns Does not return a value.
*/
addVectors(_vectors: number[][], _documents: Document[]): Promise<void>;
/**
* Method to delete data from the Vectara corpus.
* @param params an array of document IDs to be deleted
* @returns Promise that resolves when the deletion is complete.
*/
deleteDocuments(ids: string[]): Promise<void>;
/**
* Adds documents to the Vectara store.
* @param documents An array of Document objects to add to the Vectara store.
* @returns A Promise that resolves to an array of document IDs indexed in Vectara.
*/
addDocuments(documents: Document[]): Promise<string[]>;
/**
* Vectara provides a way to add documents directly via their API. This API handles
* pre-processing and chunking internally in an optimal manner. This method is a wrapper
* to utilize that API within LangChain.
*
* @param files An array of VectaraFile objects representing the files and their respective file names to be uploaded to Vectara.
* @param metadata Optional. An array of metadata objects corresponding to each file in the `filePaths` array.
* @returns A Promise that resolves to the number of successfully uploaded files.
*/
addFiles(files: VectaraFile[], metadatas?: Record<string, unknown> | undefined): Promise<string[]>;
/**
* Performs a Vectara API call based on the arguments provided.
* @param query The query string for the similarity search.
* @param k Optional. The number of results to return. Default is 10.
* @param filter Optional. A VectaraFilter object to refine the search results.
* @returns A Promise that resolves to an array of tuples, each containing a Document and its score.
*/
vectaraQuery(query: string, k: number, vectaraFilterObject: VectaraFilter, summary?: VectaraSummary): Promise<SummaryResult>;
/**
* Performs a similarity search and returns documents along with their
* scores.
* @param query The query string for the similarity search.
* @param k Optional. The number of results to return. Default is 10.
* @param filter Optional. A VectaraFilter object to refine the search results.
* @returns A Promise that resolves to an array of tuples, each containing a Document and its score.
*/
similaritySearchWithScore(query: string, k?: number, filter?: VectaraFilter): Promise<[Document, number][]>;
/**
* Performs a similarity search and returns documents.
* @param query The query string for the similarity search.
* @param k Optional. The number of results to return. Default is 10.
* @param filter Optional. A VectaraFilter object to refine the search results.
* @returns A Promise that resolves to an array of Document objects.
*/
similaritySearch(query: string, k?: number, filter?: VectaraFilter): Promise<Document[]>;
/**
* Throws an error, as this method is not implemented. Use
* similaritySearch or similaritySearchWithScore instead.
* @param _query Not used.
* @param _k Not used.
* @param _filter Not used.
* @returns Does not return a value.
*/
similaritySearchVectorWithScore(_query: number[], _k: number, _filter?: VectaraFilter | undefined): Promise<[Document, number][]>;
/**
* Creates a VectaraStore instance from texts.
* @param texts An array of text strings.
* @param metadatas Metadata for the texts. Can be a single object or an array of objects.
* @param _embeddings Not used.
* @param args A VectaraLibArgs object for initializing the VectaraStore instance.
* @returns A Promise that resolves to a VectaraStore instance.
*/
static fromTexts(texts: string[], metadatas: object | object[], _embeddings: EmbeddingsInterface, args: VectaraLibArgs): Promise<VectaraStore>;
/**
* Creates a VectaraStore instance from documents.
* @param docs An array of Document objects.
* @param _embeddings Not used.
* @param args A VectaraLibArgs object for initializing the VectaraStore instance.
* @returns A Promise that resolves to a VectaraStore instance.
*/
static fromDocuments(docs: Document[], _embeddings: EmbeddingsInterface, args: VectaraLibArgs): Promise<VectaraStore>;
}
export {};