341 lines
14 KiB
JavaScript
341 lines
14 KiB
JavaScript
|
import * as uuid from "uuid";
|
||
|
import { VectorStore, } from "@langchain/core/vectorstores";
|
||
|
import { Document } from "@langchain/core/documents";
|
||
|
import { maximalMarginalRelevance } from "@langchain/core/utils/math";
|
||
|
// Note this function is not generic, it is designed specifically for Weaviate
|
||
|
// https://weaviate.io/developers/weaviate/config-refs/datatypes#introduction
|
||
|
/**
|
||
|
* @deprecated Prefer the `@langchain/weaviate` package.
|
||
|
*/
|
||
|
export const flattenObjectForWeaviate = (
|
||
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||
|
obj) => {
|
||
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||
|
const flattenedObject = {};
|
||
|
for (const key in obj) {
|
||
|
if (!Object.hasOwn(obj, key)) {
|
||
|
continue;
|
||
|
}
|
||
|
const value = obj[key];
|
||
|
if (typeof obj[key] === "object" && !Array.isArray(value)) {
|
||
|
const recursiveResult = flattenObjectForWeaviate(value);
|
||
|
for (const deepKey in recursiveResult) {
|
||
|
if (Object.hasOwn(obj, key)) {
|
||
|
flattenedObject[`${key}_${deepKey}`] = recursiveResult[deepKey];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (Array.isArray(value)) {
|
||
|
if (value.length === 0) {
|
||
|
flattenedObject[key] = value;
|
||
|
}
|
||
|
else if (typeof value[0] !== "object" &&
|
||
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||
|
value.every((el) => typeof el === typeof value[0])) {
|
||
|
// Weaviate only supports arrays of primitive types,
|
||
|
// where all elements are of the same type
|
||
|
flattenedObject[key] = value;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
flattenedObject[key] = value;
|
||
|
}
|
||
|
}
|
||
|
return flattenedObject;
|
||
|
};
|
||
|
/**
|
||
|
* @deprecated Prefer the `@langchain/weaviate` package.
|
||
|
*
|
||
|
* Class that extends the `VectorStore` base class. It provides methods to
|
||
|
* interact with a Weaviate index, including adding vectors and documents,
|
||
|
* deleting data, and performing similarity searches.
|
||
|
*/
|
||
|
export class WeaviateStore extends VectorStore {
|
||
|
_vectorstoreType() {
|
||
|
return "weaviate";
|
||
|
}
|
||
|
constructor(embeddings, args) {
|
||
|
super(embeddings, args);
|
||
|
Object.defineProperty(this, "embeddings", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: embeddings
|
||
|
});
|
||
|
Object.defineProperty(this, "client", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "indexName", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "textKey", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "queryAttrs", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "tenant", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
this.client = args.client;
|
||
|
this.indexName = args.indexName;
|
||
|
this.textKey = args.textKey || "text";
|
||
|
this.queryAttrs = [this.textKey];
|
||
|
this.tenant = args.tenant;
|
||
|
if (args.metadataKeys) {
|
||
|
this.queryAttrs = [
|
||
|
...new Set([
|
||
|
...this.queryAttrs,
|
||
|
...args.metadataKeys.filter((k) => {
|
||
|
// https://spec.graphql.org/June2018/#sec-Names
|
||
|
// queryAttrs need to be valid GraphQL Names
|
||
|
const keyIsValid = /^[_A-Za-z][_0-9A-Za-z]*$/.test(k);
|
||
|
if (!keyIsValid) {
|
||
|
console.warn(`Skipping metadata key ${k} as it is not a valid GraphQL Name`);
|
||
|
}
|
||
|
return keyIsValid;
|
||
|
}),
|
||
|
]),
|
||
|
];
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Method to add vectors and corresponding documents to the Weaviate
|
||
|
* index.
|
||
|
* @param vectors Array of vectors to be added.
|
||
|
* @param documents Array of documents corresponding to the vectors.
|
||
|
* @param options Optional parameter that can include specific IDs for the documents.
|
||
|
* @returns An array of document IDs.
|
||
|
*/
|
||
|
async addVectors(vectors, documents, options) {
|
||
|
const documentIds = options?.ids ?? documents.map((_) => uuid.v4());
|
||
|
const batch = documents.map((document, index) => {
|
||
|
if (Object.hasOwn(document.metadata, "id"))
|
||
|
throw new Error("Document inserted to Weaviate vectorstore should not have `id` in their metadata.");
|
||
|
const flattenedMetadata = flattenObjectForWeaviate(document.metadata);
|
||
|
return {
|
||
|
...(this.tenant ? { tenant: this.tenant } : {}),
|
||
|
class: this.indexName,
|
||
|
id: documentIds[index],
|
||
|
vector: vectors[index],
|
||
|
properties: {
|
||
|
[this.textKey]: document.pageContent,
|
||
|
...flattenedMetadata,
|
||
|
},
|
||
|
};
|
||
|
});
|
||
|
try {
|
||
|
const responses = await this.client.batch
|
||
|
.objectsBatcher()
|
||
|
.withObjects(...batch)
|
||
|
.do();
|
||
|
// if storing vectors fails, we need to know why
|
||
|
const errorMessages = [];
|
||
|
responses.forEach((response) => {
|
||
|
if (response?.result?.errors?.error) {
|
||
|
errorMessages.push(...response.result.errors.error.map((err) => err.message ??
|
||
|
"!! Unfortunately no error message was presented in the API response !!"));
|
||
|
}
|
||
|
});
|
||
|
if (errorMessages.length > 0) {
|
||
|
throw new Error(errorMessages.join("\n"));
|
||
|
}
|
||
|
}
|
||
|
catch (e) {
|
||
|
throw Error(`Error adding vectors: ${e}`);
|
||
|
}
|
||
|
return documentIds;
|
||
|
}
|
||
|
/**
|
||
|
* Method to add documents to the Weaviate index. It first generates
|
||
|
* vectors for the documents using the embeddings, then adds the vectors
|
||
|
* and documents to the index.
|
||
|
* @param documents Array of documents to be added.
|
||
|
* @param options Optional parameter that can include specific IDs for the documents.
|
||
|
* @returns An array of document IDs.
|
||
|
*/
|
||
|
async addDocuments(documents, options) {
|
||
|
return this.addVectors(await this.embeddings.embedDocuments(documents.map((d) => d.pageContent)), documents, options);
|
||
|
}
|
||
|
/**
|
||
|
* Method to delete data from the Weaviate index. It can delete data based
|
||
|
* on specific IDs or a filter.
|
||
|
* @param params Object that includes either an array of IDs or a filter for the data to be deleted.
|
||
|
* @returns Promise that resolves when the deletion is complete.
|
||
|
*/
|
||
|
async delete(params) {
|
||
|
const { ids, filter } = params;
|
||
|
if (ids && ids.length > 0) {
|
||
|
for (const id of ids) {
|
||
|
let deleter = this.client.data
|
||
|
.deleter()
|
||
|
.withClassName(this.indexName)
|
||
|
.withId(id);
|
||
|
if (this.tenant) {
|
||
|
deleter = deleter.withTenant(this.tenant);
|
||
|
}
|
||
|
await deleter.do();
|
||
|
}
|
||
|
}
|
||
|
else if (filter) {
|
||
|
let batchDeleter = this.client.batch
|
||
|
.objectsBatchDeleter()
|
||
|
.withClassName(this.indexName)
|
||
|
.withWhere(filter.where);
|
||
|
if (this.tenant) {
|
||
|
batchDeleter = batchDeleter.withTenant(this.tenant);
|
||
|
}
|
||
|
await batchDeleter.do();
|
||
|
}
|
||
|
else {
|
||
|
throw new Error(`This method requires either "ids" or "filter" to be set in the input object`);
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Method to perform a similarity search on the stored vectors in the
|
||
|
* Weaviate index. It returns the top k most similar documents and their
|
||
|
* similarity scores.
|
||
|
* @param query The query vector.
|
||
|
* @param k The number of most similar documents to return.
|
||
|
* @param filter Optional filter to apply to the search.
|
||
|
* @returns An array of tuples, where each tuple contains a document and its similarity score.
|
||
|
*/
|
||
|
async similaritySearchVectorWithScore(query, k, filter) {
|
||
|
const resultsWithEmbedding = await this.similaritySearchVectorWithScoreAndEmbedding(query, k, filter);
|
||
|
return resultsWithEmbedding.map(([document, score, _embedding]) => [
|
||
|
document,
|
||
|
score,
|
||
|
]);
|
||
|
}
|
||
|
/**
|
||
|
* Method to perform a similarity search on the stored vectors in the
|
||
|
* Weaviate index. It returns the top k most similar documents, their
|
||
|
* similarity scores and embedding vectors.
|
||
|
* @param query The query vector.
|
||
|
* @param k The number of most similar documents to return.
|
||
|
* @param filter Optional filter to apply to the search.
|
||
|
* @returns An array of tuples, where each tuple contains a document, its similarity score and its embedding vector.
|
||
|
*/
|
||
|
async similaritySearchVectorWithScoreAndEmbedding(query, k, filter) {
|
||
|
try {
|
||
|
let builder = this.client.graphql
|
||
|
.get()
|
||
|
.withClassName(this.indexName)
|
||
|
.withFields(`${this.queryAttrs.join(" ")} _additional { distance vector }`)
|
||
|
.withNearVector({
|
||
|
vector: query,
|
||
|
distance: filter?.distance,
|
||
|
})
|
||
|
.withLimit(k);
|
||
|
if (this.tenant) {
|
||
|
builder = builder.withTenant(this.tenant);
|
||
|
}
|
||
|
if (filter?.where) {
|
||
|
builder = builder.withWhere(filter.where);
|
||
|
}
|
||
|
const result = await builder.do();
|
||
|
const documents = [];
|
||
|
for (const data of result.data.Get[this.indexName]) {
|
||
|
const { [this.textKey]: text, _additional, ...rest } = data;
|
||
|
documents.push([
|
||
|
new Document({
|
||
|
pageContent: text,
|
||
|
metadata: rest,
|
||
|
}),
|
||
|
_additional.distance,
|
||
|
_additional.vector,
|
||
|
]);
|
||
|
}
|
||
|
return documents;
|
||
|
}
|
||
|
catch (e) {
|
||
|
throw Error(`'Error in similaritySearch' ${e}`);
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Return documents selected using the maximal marginal relevance.
|
||
|
* Maximal marginal relevance optimizes for similarity to the query AND diversity
|
||
|
* among selected documents.
|
||
|
*
|
||
|
* @param {string} query - Text to look up documents similar to.
|
||
|
* @param {number} options.k - Number of documents to return.
|
||
|
* @param {number} options.fetchK - Number of documents to fetch before passing to the MMR algorithm.
|
||
|
* @param {number} options.lambda - Number between 0 and 1 that determines the degree of diversity among the results,
|
||
|
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
|
||
|
* @param {this["FilterType"]} options.filter - Optional filter
|
||
|
* @param _callbacks
|
||
|
*
|
||
|
* @returns {Promise<Document[]>} - List of documents selected by maximal marginal relevance.
|
||
|
*/
|
||
|
async maxMarginalRelevanceSearch(query, options, _callbacks) {
|
||
|
const { k, fetchK = 20, lambda = 0.5, filter } = options;
|
||
|
const queryEmbedding = await this.embeddings.embedQuery(query);
|
||
|
const allResults = await this.similaritySearchVectorWithScoreAndEmbedding(queryEmbedding, fetchK, filter);
|
||
|
const embeddingList = allResults.map(([_doc, _score, embedding]) => embedding);
|
||
|
const mmrIndexes = maximalMarginalRelevance(queryEmbedding, embeddingList, lambda, k);
|
||
|
return mmrIndexes
|
||
|
.filter((idx) => idx !== -1)
|
||
|
.map((idx) => allResults[idx][0]);
|
||
|
}
|
||
|
/**
|
||
|
* Static method to create a new `WeaviateStore` instance from a list of
|
||
|
* texts. It first creates documents from the texts and metadata, then
|
||
|
* adds the documents to the Weaviate index.
|
||
|
* @param texts Array of texts.
|
||
|
* @param metadatas Metadata for the texts. Can be a single object or an array of objects.
|
||
|
* @param embeddings Embeddings to be used for the texts.
|
||
|
* @param args Arguments required to create a new `WeaviateStore` instance.
|
||
|
* @returns A new `WeaviateStore` instance.
|
||
|
*/
|
||
|
static fromTexts(texts, metadatas, embeddings, args) {
|
||
|
const docs = [];
|
||
|
for (let i = 0; i < texts.length; i += 1) {
|
||
|
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
|
||
|
const newDoc = new Document({
|
||
|
pageContent: texts[i],
|
||
|
metadata,
|
||
|
});
|
||
|
docs.push(newDoc);
|
||
|
}
|
||
|
return WeaviateStore.fromDocuments(docs, embeddings, args);
|
||
|
}
|
||
|
/**
|
||
|
* Static method to create a new `WeaviateStore` instance from a list of
|
||
|
* documents. It adds the documents to the Weaviate index.
|
||
|
* @param docs Array of documents.
|
||
|
* @param embeddings Embeddings to be used for the documents.
|
||
|
* @param args Arguments required to create a new `WeaviateStore` instance.
|
||
|
* @returns A new `WeaviateStore` instance.
|
||
|
*/
|
||
|
static async fromDocuments(docs, embeddings, args) {
|
||
|
const instance = new this(embeddings, args);
|
||
|
await instance.addDocuments(docs);
|
||
|
return instance;
|
||
|
}
|
||
|
/**
|
||
|
* Static method to create a new `WeaviateStore` instance from an existing
|
||
|
* Weaviate index.
|
||
|
* @param embeddings Embeddings to be used for the Weaviate index.
|
||
|
* @param args Arguments required to create a new `WeaviateStore` instance.
|
||
|
* @returns A new `WeaviateStore` instance.
|
||
|
*/
|
||
|
static async fromExistingIndex(embeddings, args) {
|
||
|
return new this(embeddings, args);
|
||
|
}
|
||
|
}
|