agsamantha/node_modules/langchain/dist/agents/agent.d.ts

285 lines
11 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import type { StructuredToolInterface, ToolInterface } from "@langchain/core/tools";
import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import { CallbackManager, Callbacks } from "@langchain/core/callbacks/manager";
import { BasePromptTemplate } from "@langchain/core/prompts";
import { AgentAction, AgentFinish, AgentStep } from "@langchain/core/agents";
import { BaseMessage } from "@langchain/core/messages";
import { ChainValues } from "@langchain/core/utils/types";
import { Serializable } from "@langchain/core/load/serializable";
import { Runnable, type RunnableConfig, RunnableSequence, RunnableLike } from "@langchain/core/runnables";
import { LLMChain } from "../chains/llm_chain.js";
import type { AgentActionOutputParser, AgentInput, RunnableMultiActionAgentInput, RunnableSingleActionAgentInput, SerializedAgent, StoppingMethod } from "./types.js";
/**
* Record type for arguments passed to output parsers.
*/
export type OutputParserArgs = Record<string, any>;
/**
* Abstract base class for agents in LangChain. Provides common
* functionality for agents, such as handling inputs and outputs.
*/
export declare abstract class BaseAgent extends Serializable {
ToolType: StructuredToolInterface;
abstract get inputKeys(): string[];
get returnValues(): string[];
get allowedTools(): string[] | undefined;
/**
* Return the string type key uniquely identifying this class of agent.
*/
_agentType(): string;
/**
* Return the string type key uniquely identifying multi or single action agents.
*/
abstract _agentActionType(): string;
/**
* Return response when agent has been stopped due to max iterations
*/
returnStoppedResponse(earlyStoppingMethod: StoppingMethod, _steps: AgentStep[], _inputs: ChainValues, _callbackManager?: CallbackManager): Promise<AgentFinish>;
/**
* Prepare the agent for output, if needed
*/
prepareForOutput(_returnValues: AgentFinish["returnValues"], _steps: AgentStep[]): Promise<AgentFinish["returnValues"]>;
}
/**
* Abstract base class for single action agents in LangChain. Extends the
* BaseAgent class and provides additional functionality specific to
* single action agents.
*/
export declare abstract class BaseSingleActionAgent extends BaseAgent {
_agentActionType(): string;
/**
* Decide what to do, given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager.
*
* @returns Action specifying what tool to use.
*/
abstract plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager, config?: RunnableConfig): Promise<AgentAction | AgentFinish>;
}
/**
* Abstract base class for multi-action agents in LangChain. Extends the
* BaseAgent class and provides additional functionality specific to
* multi-action agents.
*/
export declare abstract class BaseMultiActionAgent extends BaseAgent {
_agentActionType(): string;
/**
* Decide what to do, given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager.
*
* @returns Actions specifying what tools to use.
*/
abstract plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager, config?: RunnableConfig): Promise<AgentAction[] | AgentFinish>;
}
export declare function isRunnableAgent(x: BaseAgent): boolean;
export declare class AgentRunnableSequence<RunInput = any, RunOutput = any> extends RunnableSequence<RunInput, RunOutput> {
streamRunnable?: boolean;
singleAction: boolean;
static fromRunnables<RunInput = any, RunOutput = any>([first, ...runnables]: [
RunnableLike<RunInput>,
...RunnableLike[],
RunnableLike<any, RunOutput>
], config: {
singleAction: boolean;
streamRunnable?: boolean;
name?: string;
}): AgentRunnableSequence<RunInput, Exclude<RunOutput, Error>>;
static isAgentRunnableSequence(x: Runnable): x is AgentRunnableSequence;
}
/**
* Class representing a single-action agent powered by runnables.
* Extends the BaseSingleActionAgent class and provides methods for
* planning agent actions with runnables.
*/
export declare class RunnableSingleActionAgent extends BaseSingleActionAgent {
lc_namespace: string[];
runnable: Runnable<ChainValues & {
steps: AgentStep[];
}, AgentAction | AgentFinish>;
get inputKeys(): string[];
/**
* Whether to stream from the runnable or not.
* If true, the underlying LLM is invoked in a streaming fashion to make it
* possible to get access to the individual LLM tokens when using
* `streamLog` with the Agent Executor. If false then LLM is invoked in a
* non-streaming fashion and individual LLM tokens will not be available
* in `streamLog`.
*
* Note that the runnable should still only stream a single action or
* finish chunk.
*/
streamRunnable: boolean;
defaultRunName: string;
constructor(fields: RunnableSingleActionAgentInput);
plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager, config?: RunnableConfig): Promise<AgentAction | AgentFinish>;
}
/**
* Class representing a multi-action agent powered by runnables.
* Extends the BaseMultiActionAgent class and provides methods for
* planning agent actions with runnables.
*/
export declare class RunnableMultiActionAgent extends BaseMultiActionAgent {
lc_namespace: string[];
runnable: Runnable<ChainValues & {
steps: AgentStep[];
}, AgentAction[] | AgentAction | AgentFinish>;
defaultRunName: string;
stop?: string[];
streamRunnable: boolean;
get inputKeys(): string[];
constructor(fields: RunnableMultiActionAgentInput);
plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager, config?: RunnableConfig): Promise<AgentAction[] | AgentFinish>;
}
/** @deprecated Renamed to RunnableMultiActionAgent. */
export declare class RunnableAgent extends RunnableMultiActionAgent {
}
/**
* Interface for input data for creating a LLMSingleActionAgent.
*/
export interface LLMSingleActionAgentInput {
llmChain: LLMChain;
outputParser: AgentActionOutputParser;
stop?: string[];
}
/**
* Class representing a single action agent using a LLMChain in LangChain.
* Extends the BaseSingleActionAgent class and provides methods for
* planning agent actions based on LLMChain outputs.
* @example
* ```typescript
* const customPromptTemplate = new CustomPromptTemplate({
* tools: [new Calculator()],
* inputVariables: ["input", "agent_scratchpad"],
* });
* const customOutputParser = new CustomOutputParser();
* const agent = new LLMSingleActionAgent({
* llmChain: new LLMChain({
* prompt: customPromptTemplate,
* llm: new ChatOpenAI({ temperature: 0 }),
* }),
* outputParser: customOutputParser,
* stop: ["\nObservation"],
* });
* const executor = new AgentExecutor({
* agent,
* tools: [new Calculator()],
* });
* const result = await executor.invoke({
* input:
* "Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?",
* });
* ```
*/
export declare class LLMSingleActionAgent extends BaseSingleActionAgent {
lc_namespace: string[];
llmChain: LLMChain;
outputParser: AgentActionOutputParser;
stop?: string[];
constructor(input: LLMSingleActionAgentInput);
get inputKeys(): string[];
/**
* Decide what to do given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager.
*
* @returns Action specifying what tool to use.
*/
plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentAction | AgentFinish>;
}
/**
* Interface for arguments used to create an agent in LangChain.
*/
export interface AgentArgs {
outputParser?: AgentActionOutputParser;
callbacks?: Callbacks;
/**
* @deprecated Use `callbacks` instead.
*/
callbackManager?: CallbackManager;
}
/**
* Class responsible for calling a language model and deciding an action.
*
* @remarks This is driven by an LLMChain. The prompt in the LLMChain *must*
* include a variable called "agent_scratchpad" where the agent can put its
* intermediary work.
*
* @deprecated Use {@link https://js.langchain.com/docs/modules/agents/agent_types/ | new agent creation methods}.
*/
export declare abstract class Agent extends BaseSingleActionAgent {
llmChain: LLMChain;
outputParser: AgentActionOutputParser | undefined;
private _allowedTools?;
get allowedTools(): string[] | undefined;
get inputKeys(): string[];
constructor(input: AgentInput);
/**
* Prefix to append the observation with.
*/
abstract observationPrefix(): string;
/**
* Prefix to append the LLM call with.
*/
abstract llmPrefix(): string;
/**
* Return the string type key uniquely identifying this class of agent.
*/
abstract _agentType(): string;
/**
* Get the default output parser for this agent.
*/
static getDefaultOutputParser(_fields?: OutputParserArgs): AgentActionOutputParser;
/**
* Create a prompt for this class
*
* @param _tools - List of tools the agent will have access to, used to format the prompt.
* @param _fields - Additional fields used to format the prompt.
*
* @returns A PromptTemplate assembled from the given tools and fields.
* */
static createPrompt(_tools: StructuredToolInterface[], _fields?: Record<string, any>): BasePromptTemplate;
/** Construct an agent from an LLM and a list of tools */
static fromLLMAndTools(_llm: BaseLanguageModelInterface, _tools: StructuredToolInterface[], _args?: AgentArgs): Agent;
/**
* Validate that appropriate tools are passed in
*/
static validateTools(_tools: StructuredToolInterface[]): void;
_stop(): string[];
/**
* Name of tool to use to terminate the chain.
*/
finishToolName(): string;
/**
* Construct a scratchpad to let the agent continue its thought process
*/
constructScratchPad(steps: AgentStep[]): Promise<string | BaseMessage[]>;
private _plan;
/**
* Decide what to do given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager to use for this call.
*
* @returns Action specifying what tool to use.
*/
plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentAction | AgentFinish>;
/**
* Return response when agent has been stopped due to max iterations
*/
returnStoppedResponse(earlyStoppingMethod: StoppingMethod, steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentFinish>;
/**
* Load an agent from a json-like object describing it.
*/
static deserialize(data: SerializedAgent & {
llm?: BaseLanguageModelInterface;
tools?: ToolInterface[];
}): Promise<Agent>;
}