agsamantha/node_modules/langchain/dist/agents/mrkl/index.d.ts

94 lines
3.9 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import { ToolInterface } from "@langchain/core/tools";
import { PromptTemplate } from "@langchain/core/prompts";
import { Optional } from "../../types/type-utils.js";
import { Agent, AgentArgs, OutputParserArgs } from "../agent.js";
import { AgentInput, SerializedZeroShotAgent } from "../types.js";
import { ZeroShotAgentOutputParser } from "./outputParser.js";
/**
* Interface for creating a prompt for the ZeroShotAgent.
*/
export interface ZeroShotCreatePromptArgs {
/** String to put after the list of tools. */
suffix?: string;
/** String to put before the list of tools. */
prefix?: string;
/** List of input variables the final prompt will expect. */
inputVariables?: string[];
}
/**
* Type for the input to the ZeroShotAgent, with the 'outputParser'
* property made optional.
*/
export type ZeroShotAgentInput = Optional<AgentInput, "outputParser">;
/**
* Agent for the MRKL chain.
* @augments Agent
* @example
* ```typescript
*
* const agent = new ZeroShotAgent({
* llmChain: new LLMChain({
* llm: new ChatOpenAI({ temperature: 0 }),
* prompt: ZeroShotAgent.createPrompt([new SerpAPI(), new Calculator()], {
* prefix: `Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:`,
* suffix: `Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
* Question: {input}
* {agent_scratchpad}`,
* inputVariables: ["input", "agent_scratchpad"],
* }),
* }),
* allowedTools: ["search", "calculator"],
* });
*
* const result = await agent.invoke({
* input: `Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?`,
* });
* ```
*
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createReactAgent.html | createReactAgent method instead}.
*/
export declare class ZeroShotAgent extends Agent {
static lc_name(): string;
lc_namespace: string[];
ToolType: ToolInterface;
constructor(input: ZeroShotAgentInput);
_agentType(): "zero-shot-react-description";
observationPrefix(): string;
llmPrefix(): string;
/**
* Returns the default output parser for the ZeroShotAgent.
* @param fields Optional arguments for the output parser.
* @returns An instance of ZeroShotAgentOutputParser.
*/
static getDefaultOutputParser(fields?: OutputParserArgs): ZeroShotAgentOutputParser;
/**
* Validates the tools for the ZeroShotAgent. Throws an error if any tool
* does not have a description.
* @param tools List of tools to validate.
*/
static validateTools(tools: ToolInterface[]): void;
/**
* Create prompt in the style of the zero shot agent.
*
* @param tools - List of tools the agent will have access to, used to format the prompt.
* @param args - Arguments to create the prompt with.
* @param args.suffix - String to put after the list of tools.
* @param args.prefix - String to put before the list of tools.
* @param args.inputVariables - List of input variables the final prompt will expect.
*/
static createPrompt(tools: ToolInterface[], args?: ZeroShotCreatePromptArgs): PromptTemplate<any, any>;
/**
* Creates a ZeroShotAgent from a Large Language Model and a set of tools.
* @param llm The Large Language Model to use.
* @param tools The tools for the agent to use.
* @param args Optional arguments for creating the agent.
* @returns A new instance of ZeroShotAgent.
*/
static fromLLMAndTools(llm: BaseLanguageModelInterface, tools: ToolInterface[], args?: ZeroShotCreatePromptArgs & AgentArgs): ZeroShotAgent;
static deserialize(data: SerializedZeroShotAgent & {
llm?: BaseLanguageModelInterface;
tools?: ToolInterface[];
}): Promise<ZeroShotAgent>;
}