247 lines
9.2 KiB
JavaScript
247 lines
9.2 KiB
JavaScript
|
"use strict";
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.createOpenAIFunctionsAgent = exports.OpenAIAgent = exports._formatIntermediateSteps = void 0;
|
||
|
const runnables_1 = require("@langchain/core/runnables");
|
||
|
const function_calling_1 = require("@langchain/core/utils/function_calling");
|
||
|
const messages_1 = require("@langchain/core/messages");
|
||
|
const prompts_1 = require("@langchain/core/prompts");
|
||
|
const agent_js_1 = require("../agent.cjs");
|
||
|
const prompt_js_1 = require("./prompt.cjs");
|
||
|
const llm_chain_js_1 = require("../../chains/llm_chain.cjs");
|
||
|
const output_parser_js_1 = require("../openai/output_parser.cjs");
|
||
|
const openai_functions_js_1 = require("../format_scratchpad/openai_functions.cjs");
|
||
|
/**
|
||
|
* Checks if the given action is a FunctionsAgentAction.
|
||
|
* @param action The action to check.
|
||
|
* @returns True if the action is a FunctionsAgentAction, false otherwise.
|
||
|
*/
|
||
|
function isFunctionsAgentAction(action) {
|
||
|
return action.messageLog !== undefined;
|
||
|
}
|
||
|
function _convertAgentStepToMessages(action, observation) {
|
||
|
if (isFunctionsAgentAction(action) && action.messageLog !== undefined) {
|
||
|
return action.messageLog?.concat(new messages_1.FunctionMessage(observation, action.tool));
|
||
|
}
|
||
|
else {
|
||
|
return [new messages_1.AIMessage(action.log)];
|
||
|
}
|
||
|
}
|
||
|
function _formatIntermediateSteps(intermediateSteps) {
|
||
|
return intermediateSteps.flatMap(({ action, observation }) => _convertAgentStepToMessages(action, observation));
|
||
|
}
|
||
|
exports._formatIntermediateSteps = _formatIntermediateSteps;
|
||
|
/**
|
||
|
* Class representing an agent for the OpenAI chat model in LangChain. It
|
||
|
* extends the Agent class and provides additional functionality specific
|
||
|
* to the OpenAIAgent type.
|
||
|
*
|
||
|
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createOpenAIFunctionsAgent.html | createOpenAIFunctionsAgent method instead}.
|
||
|
*/
|
||
|
class OpenAIAgent extends agent_js_1.Agent {
|
||
|
static lc_name() {
|
||
|
return "OpenAIAgent";
|
||
|
}
|
||
|
_agentType() {
|
||
|
return "openai-functions";
|
||
|
}
|
||
|
observationPrefix() {
|
||
|
return "Observation: ";
|
||
|
}
|
||
|
llmPrefix() {
|
||
|
return "Thought:";
|
||
|
}
|
||
|
_stop() {
|
||
|
return ["Observation:"];
|
||
|
}
|
||
|
constructor(input) {
|
||
|
super({ ...input, outputParser: undefined });
|
||
|
Object.defineProperty(this, "lc_namespace", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: ["langchain", "agents", "openai"]
|
||
|
});
|
||
|
Object.defineProperty(this, "tools", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "outputParser", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: new output_parser_js_1.OpenAIFunctionsAgentOutputParser()
|
||
|
});
|
||
|
this.tools = input.tools;
|
||
|
}
|
||
|
/**
|
||
|
* Creates a prompt for the OpenAIAgent using the provided tools and
|
||
|
* fields.
|
||
|
* @param _tools The tools to be used in the prompt.
|
||
|
* @param fields Optional fields for creating the prompt.
|
||
|
* @returns A BasePromptTemplate object representing the created prompt.
|
||
|
*/
|
||
|
static createPrompt(_tools, fields) {
|
||
|
const { prefix = prompt_js_1.PREFIX } = fields || {};
|
||
|
return prompts_1.ChatPromptTemplate.fromMessages([
|
||
|
prompts_1.SystemMessagePromptTemplate.fromTemplate(prefix),
|
||
|
new prompts_1.MessagesPlaceholder("chat_history"),
|
||
|
prompts_1.HumanMessagePromptTemplate.fromTemplate("{input}"),
|
||
|
new prompts_1.MessagesPlaceholder("agent_scratchpad"),
|
||
|
]);
|
||
|
}
|
||
|
/**
|
||
|
* Creates an OpenAIAgent from a BaseLanguageModel and a list of tools.
|
||
|
* @param llm The BaseLanguageModel to use.
|
||
|
* @param tools The tools to be used by the agent.
|
||
|
* @param args Optional arguments for creating the agent.
|
||
|
* @returns An instance of OpenAIAgent.
|
||
|
*/
|
||
|
static fromLLMAndTools(llm, tools, args) {
|
||
|
OpenAIAgent.validateTools(tools);
|
||
|
if (llm._modelType() !== "base_chat_model" || llm._llmType() !== "openai") {
|
||
|
throw new Error("OpenAIAgent requires an OpenAI chat model");
|
||
|
}
|
||
|
const prompt = OpenAIAgent.createPrompt(tools, args);
|
||
|
const chain = new llm_chain_js_1.LLMChain({
|
||
|
prompt,
|
||
|
llm,
|
||
|
callbacks: args?.callbacks,
|
||
|
});
|
||
|
return new OpenAIAgent({
|
||
|
llmChain: chain,
|
||
|
allowedTools: tools.map((t) => t.name),
|
||
|
tools,
|
||
|
});
|
||
|
}
|
||
|
/**
|
||
|
* Constructs a scratch pad from a list of agent steps.
|
||
|
* @param steps The steps to include in the scratch pad.
|
||
|
* @returns A string or a list of BaseMessages representing the constructed scratch pad.
|
||
|
*/
|
||
|
async constructScratchPad(steps) {
|
||
|
return _formatIntermediateSteps(steps);
|
||
|
}
|
||
|
/**
|
||
|
* Plans the next action or finish state of the agent based on the
|
||
|
* provided steps, inputs, and optional callback manager.
|
||
|
* @param steps The steps to consider in planning.
|
||
|
* @param inputs The inputs to consider in planning.
|
||
|
* @param callbackManager Optional CallbackManager to use in planning.
|
||
|
* @returns A Promise that resolves to an AgentAction or AgentFinish object representing the planned action or finish state.
|
||
|
*/
|
||
|
async plan(steps, inputs, callbackManager) {
|
||
|
// Add scratchpad and stop to inputs
|
||
|
const thoughts = await this.constructScratchPad(steps);
|
||
|
const newInputs = {
|
||
|
...inputs,
|
||
|
agent_scratchpad: thoughts,
|
||
|
};
|
||
|
if (this._stop().length !== 0) {
|
||
|
newInputs.stop = this._stop();
|
||
|
}
|
||
|
// Split inputs between prompt and llm
|
||
|
const llm = this.llmChain.llm;
|
||
|
const valuesForPrompt = { ...newInputs };
|
||
|
const valuesForLLM = {
|
||
|
functions: this.tools.map((tool) => (0, function_calling_1.convertToOpenAIFunction)(tool)),
|
||
|
};
|
||
|
const callKeys = "callKeys" in this.llmChain.llm ? this.llmChain.llm.callKeys : [];
|
||
|
for (const key of callKeys) {
|
||
|
if (key in inputs) {
|
||
|
valuesForLLM[key] =
|
||
|
inputs[key];
|
||
|
delete valuesForPrompt[key];
|
||
|
}
|
||
|
}
|
||
|
const promptValue = await this.llmChain.prompt.formatPromptValue(valuesForPrompt);
|
||
|
const message = await llm.invoke(promptValue.toChatMessages(), {
|
||
|
...valuesForLLM,
|
||
|
callbacks: callbackManager,
|
||
|
});
|
||
|
return this.outputParser.parseAIMessage(message);
|
||
|
}
|
||
|
}
|
||
|
exports.OpenAIAgent = OpenAIAgent;
|
||
|
/**
|
||
|
* Create an agent that uses OpenAI-style function calling.
|
||
|
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
|
||
|
* @returns A runnable sequence representing an agent. It takes as input all the same input
|
||
|
* variables as the prompt passed in does. It returns as output either an
|
||
|
* AgentAction or AgentFinish.
|
||
|
*
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* import { AgentExecutor, createOpenAIFunctionsAgent } from "langchain/agents";
|
||
|
* import { pull } from "langchain/hub";
|
||
|
* import type { ChatPromptTemplate } from "@langchain/core/prompts";
|
||
|
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
|
||
|
*
|
||
|
* import { ChatOpenAI } from "@langchain/openai";
|
||
|
*
|
||
|
* // Define the tools the agent will have access to.
|
||
|
* const tools = [...];
|
||
|
*
|
||
|
* // Get the prompt to use - you can modify this!
|
||
|
* // If you want to see the prompt in full, you can at:
|
||
|
* // https://smith.langchain.com/hub/hwchase17/openai-functions-agent
|
||
|
* const prompt = await pull<ChatPromptTemplate>(
|
||
|
* "hwchase17/openai-functions-agent"
|
||
|
* );
|
||
|
*
|
||
|
* const llm = new ChatOpenAI({
|
||
|
* temperature: 0,
|
||
|
* });
|
||
|
*
|
||
|
* const agent = await createOpenAIFunctionsAgent({
|
||
|
* llm,
|
||
|
* tools,
|
||
|
* prompt,
|
||
|
* });
|
||
|
*
|
||
|
* const agentExecutor = new AgentExecutor({
|
||
|
* agent,
|
||
|
* tools,
|
||
|
* });
|
||
|
*
|
||
|
* const result = await agentExecutor.invoke({
|
||
|
* input: "what is LangChain?",
|
||
|
* });
|
||
|
*
|
||
|
* // With chat history
|
||
|
* const result2 = await agentExecutor.invoke({
|
||
|
* input: "what's my name?",
|
||
|
* chat_history: [
|
||
|
* new HumanMessage("hi! my name is cob"),
|
||
|
* new AIMessage("Hello Cob! How can I assist you today?"),
|
||
|
* ],
|
||
|
* });
|
||
|
* ```
|
||
|
*/
|
||
|
async function createOpenAIFunctionsAgent({ llm, tools, prompt, streamRunnable, }) {
|
||
|
if (!prompt.inputVariables.includes("agent_scratchpad")) {
|
||
|
throw new Error([
|
||
|
`Prompt must have an input variable named "agent_scratchpad".`,
|
||
|
`Found ${JSON.stringify(prompt.inputVariables)} instead.`,
|
||
|
].join("\n"));
|
||
|
}
|
||
|
const llmWithTools = llm.bind({
|
||
|
functions: tools.map((tool) => (0, function_calling_1.convertToOpenAIFunction)(tool)),
|
||
|
});
|
||
|
const agent = agent_js_1.AgentRunnableSequence.fromRunnables([
|
||
|
runnables_1.RunnablePassthrough.assign({
|
||
|
agent_scratchpad: (input) => (0, openai_functions_js_1.formatToOpenAIFunctionMessages)(input.steps),
|
||
|
}),
|
||
|
prompt,
|
||
|
llmWithTools,
|
||
|
new output_parser_js_1.OpenAIFunctionsAgentOutputParser(),
|
||
|
], {
|
||
|
name: "OpenAIFunctionsAgent",
|
||
|
streamRunnable,
|
||
|
singleAction: true,
|
||
|
});
|
||
|
return agent;
|
||
|
}
|
||
|
exports.createOpenAIFunctionsAgent = createOpenAIFunctionsAgent;
|