agsamantha/node_modules/langchain/dist/agents/xml/index.d.ts

123 lines
4.7 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import type { ToolInterface } from "@langchain/core/tools";
import type { BasePromptTemplate } from "@langchain/core/prompts";
import { AgentStep, AgentAction, AgentFinish } from "@langchain/core/agents";
import { ChainValues } from "@langchain/core/utils/types";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { CallbackManager } from "@langchain/core/callbacks/manager";
import { LLMChain } from "../../chains/llm_chain.js";
import { AgentArgs, AgentRunnableSequence, BaseSingleActionAgent } from "../agent.js";
import { XMLAgentOutputParser } from "./output_parser.js";
/**
* Interface for the input to the XMLAgent class.
*/
export interface XMLAgentInput {
tools: ToolInterface[];
llmChain: LLMChain;
}
/**
* Class that represents an agent that uses XML tags.
*
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createXmlAgent.html | createXmlAgent method instead}.
*/
export declare class XMLAgent extends BaseSingleActionAgent implements XMLAgentInput {
static lc_name(): string;
lc_namespace: string[];
tools: ToolInterface[];
llmChain: LLMChain;
outputParser: XMLAgentOutputParser;
_agentType(): "xml";
constructor(fields: XMLAgentInput);
get inputKeys(): string[];
static createPrompt(): ChatPromptTemplate<any, any>;
/**
* Plans the next action or finish state of the agent based on the
* provided steps, inputs, and optional callback manager.
* @param steps The steps to consider in planning.
* @param inputs The inputs to consider in planning.
* @param callbackManager Optional CallbackManager to use in planning.
* @returns A Promise that resolves to an AgentAction or AgentFinish object representing the planned action or finish state.
*/
plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentAction | AgentFinish>;
/**
* Creates an XMLAgent from a BaseLanguageModel and a list of tools.
* @param llm The BaseLanguageModel to use.
* @param tools The tools to be used by the agent.
* @param args Optional arguments for creating the agent.
* @returns An instance of XMLAgent.
*/
static fromLLMAndTools(llm: BaseLanguageModelInterface, tools: ToolInterface[], args?: XMLAgentInput & Pick<AgentArgs, "callbacks">): XMLAgent;
}
/**
* Params used by the createXmlAgent function.
*/
export type CreateXmlAgentParams = {
/** LLM to use for the agent. */
llm: BaseLanguageModelInterface;
/** Tools this agent has access to. */
tools: ToolInterface[];
/**
* The prompt to use. Must have input keys for
* `tools` and `agent_scratchpad`.
*/
prompt: BasePromptTemplate;
/**
* Whether to invoke the underlying model in streaming mode,
* allowing streaming of intermediate steps. Defaults to true.
*/
streamRunnable?: boolean;
};
/**
* Create an agent that uses XML to format its logic.
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
* @returns A runnable sequence representing an agent. It takes as input all the same input
* variables as the prompt passed in does. It returns as output either an
* AgentAction or AgentFinish.
*
* @example
* ```typescript
* import { AgentExecutor, createXmlAgent } from "langchain/agents";
* import { pull } from "langchain/hub";
* import type { PromptTemplate } from "@langchain/core/prompts";
*
* import { ChatAnthropic } from "@langchain/anthropic";
*
* // Define the tools the agent will have access to.
* const tools = [...];
*
* // Get the prompt to use - you can modify this!
* // If you want to see the prompt in full, you can at:
* // https://smith.langchain.com/hub/hwchase17/xml-agent-convo
* const prompt = await pull<PromptTemplate>("hwchase17/xml-agent-convo");
*
* const llm = new ChatAnthropic({
* temperature: 0,
* });
*
* const agent = await createXmlAgent({
* llm,
* tools,
* prompt,
* });
*
* const agentExecutor = new AgentExecutor({
* agent,
* tools,
* });
*
* const result = await agentExecutor.invoke({
* input: "what is LangChain?",
* });
*
* // With chat history
* const result2 = await agentExecutor.invoke({
* input: "what's my name?",
* // Notice that chat_history is a string, since this prompt is aimed at LLMs, not chat models
* chat_history: "Human: Hi! My name is Cob\nAI: Hello Cob! Nice to meet you",
* });
* ```
*/
export declare function createXmlAgent({ llm, tools, prompt, streamRunnable, }: CreateXmlAgentParams): Promise<AgentRunnableSequence<{
steps: AgentStep[];
}, AgentAction | AgentFinish>>;