61 lines
2.5 KiB
JavaScript
61 lines
2.5 KiB
JavaScript
|
"use strict";
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.loadEvaluator = void 0;
|
||
|
const openai_1 = require("@langchain/openai");
|
||
|
const chat_models_1 = require("@langchain/core/language_models/chat_models");
|
||
|
const index_js_1 = require("./criteria/index.cjs");
|
||
|
const index_js_2 = require("./comparison/index.cjs");
|
||
|
const index_js_3 = require("./embedding_distance/index.cjs");
|
||
|
const index_js_4 = require("./agents/index.cjs");
|
||
|
/**
|
||
|
* Load the requested evaluation chain specified by a string
|
||
|
* @param type The type of evaluator to load.
|
||
|
* @param options
|
||
|
* - llm The language model to use for the evaluator.
|
||
|
* - criteria The criteria to use for the evaluator.
|
||
|
* - agentTools A list of tools available to the agent,for TrajectoryEvalChain.
|
||
|
*/
|
||
|
async function loadEvaluator(type, options) {
|
||
|
const { llm, chainOptions, criteria, agentTools } = options || {};
|
||
|
const llm_ = llm ??
|
||
|
new openai_1.ChatOpenAI({
|
||
|
modelName: "gpt-4",
|
||
|
temperature: 0.0,
|
||
|
});
|
||
|
let evaluator;
|
||
|
switch (type) {
|
||
|
case "criteria":
|
||
|
evaluator = await index_js_1.CriteriaEvalChain.fromLLM(llm_, criteria, chainOptions);
|
||
|
break;
|
||
|
case "labeled_criteria":
|
||
|
evaluator = await index_js_1.LabeledCriteriaEvalChain.fromLLM(llm_, criteria, chainOptions);
|
||
|
break;
|
||
|
case "pairwise_string":
|
||
|
evaluator = await index_js_2.PairwiseStringEvalChain.fromLLM(llm_, criteria, chainOptions);
|
||
|
break;
|
||
|
case "labeled_pairwise_string":
|
||
|
evaluator = await index_js_2.LabeledPairwiseStringEvalChain.fromLLM(llm_, criteria, chainOptions);
|
||
|
break;
|
||
|
case "trajectory":
|
||
|
// eslint-disable-next-line no-instanceof/no-instanceof
|
||
|
if (!(llm_ instanceof chat_models_1.BaseChatModel)) {
|
||
|
throw new Error("LLM must be an instance of a base chat model.");
|
||
|
}
|
||
|
evaluator = await index_js_4.TrajectoryEvalChain.fromLLM(llm_, agentTools, chainOptions);
|
||
|
break;
|
||
|
case "embedding_distance":
|
||
|
evaluator = new index_js_3.EmbeddingDistanceEvalChain({
|
||
|
embedding: options?.embedding,
|
||
|
distanceMetric: options?.distanceMetric,
|
||
|
});
|
||
|
break;
|
||
|
case "pairwise_embedding_distance":
|
||
|
evaluator = new index_js_3.PairwiseEmbeddingDistanceEvalChain({});
|
||
|
break;
|
||
|
default:
|
||
|
throw new Error(`Unknown type: ${type}`);
|
||
|
}
|
||
|
return evaluator;
|
||
|
}
|
||
|
exports.loadEvaluator = loadEvaluator;
|