agsamantha/node_modules/langchain/dist/retrievers/time_weighted.d.ts

142 lines
5.1 KiB
TypeScript
Raw Normal View History

2024-10-02 20:15:21 +00:00
import { BaseRetriever, BaseRetrieverInput } from "@langchain/core/retrievers";
import type { VectorStoreInterface } from "@langchain/core/vectorstores";
import type { DocumentInterface } from "@langchain/core/documents";
import { CallbackManagerForRetrieverRun } from "@langchain/core/callbacks/manager";
/**
* Interface for the fields required to initialize a
* TimeWeightedVectorStoreRetriever instance.
*/
export interface TimeWeightedVectorStoreRetrieverFields extends BaseRetrieverInput {
vectorStore: VectorStoreInterface;
searchKwargs?: number;
memoryStream?: DocumentInterface[];
decayRate?: number;
k?: number;
otherScoreKeys?: string[];
defaultSalience?: number;
}
export declare const LAST_ACCESSED_AT_KEY = "last_accessed_at";
export declare const BUFFER_IDX = "buffer_idx";
/**
* TimeWeightedVectorStoreRetriever retrieves documents based on their time-weighted relevance.
* ref: https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/time_weighted_retriever.py
* @example
* ```typescript
* const retriever = new TimeWeightedVectorStoreRetriever({
* vectorStore: new MemoryVectorStore(new OpenAIEmbeddings()),
* memoryStream: [],
* searchKwargs: 2,
* });
* await retriever.addDocuments([
* { pageContent: "My name is John.", metadata: {} },
* { pageContent: "My favourite food is pizza.", metadata: {} },
*
* ]);
* const results = await retriever.getRelevantDocuments(
* "What is my favourite food?",
* );
* ```
*/
export declare class TimeWeightedVectorStoreRetriever extends BaseRetriever {
static lc_name(): string;
get lc_namespace(): string[];
/**
* The vectorstore to store documents and determine salience.
*/
private vectorStore;
/**
* The number of top K most relevant documents to consider when searching.
*/
private searchKwargs;
/**
* The memory_stream of documents to search through.
*/
private memoryStream;
/**
* The exponential decay factor used as (1.0-decay_rate)**(hrs_passed).
*/
private decayRate;
/**
* The maximum number of documents to retrieve in a given call.
*/
private k;
/**
* Other keys in the metadata to factor into the score, e.g. 'importance'.
*/
private otherScoreKeys;
/**
* The salience to assign memories not retrieved from the vector store.
*/
private defaultSalience;
/**
* Constructor to initialize the required fields
* @param fields - The fields required for initializing the TimeWeightedVectorStoreRetriever
*/
constructor(fields: TimeWeightedVectorStoreRetrieverFields);
/**
* Get the memory stream of documents.
* @returns The memory stream of documents.
*/
getMemoryStream(): DocumentInterface[];
/**
* Set the memory stream of documents.
* @param memoryStream The new memory stream of documents.
*/
setMemoryStream(memoryStream: DocumentInterface[]): void;
/**
* Get relevant documents based on time-weighted relevance
* @param query - The query to search for
* @returns The relevant documents
*/
_getRelevantDocuments(query: string, runManager?: CallbackManagerForRetrieverRun): Promise<DocumentInterface[]>;
/**
* NOTE: When adding documents to a vector store, use addDocuments
* via retriever instead of directly to the vector store.
* This is because it is necessary to process the document
* in prepareDocuments.
*
* @param docs - The documents to add to vector store in the retriever
*/
addDocuments(docs: DocumentInterface[]): Promise<void>;
/**
* Get memory documents and their scores
* @returns An object containing memory documents and their scores
*/
private getMemoryDocsAndScores;
/**
* Get salient documents and their scores based on the query
* @param query - The query to search for
* @returns An object containing salient documents and their scores
*/
private getSalientDocuments;
/**
* Compute the final result set of documents based on the combined scores
* @param docsAndScores - An object containing documents and their scores
* @param now - The current timestamp
* @returns The final set of documents
*/
private computeResults;
/**
* Prepare documents with necessary metadata before saving
* @param docs - The documents to prepare
* @param now - The current timestamp
* @returns The prepared documents
*/
private prepareDocuments;
/**
* Calculate the combined score based on vector relevance and other factors
* @param doc - The document to calculate the score for
* @param vectorRelevance - The relevance score from the vector store
* @param nowMsec - The current timestamp in milliseconds
* @returns The combined score for the document
*/
private getCombinedScore;
/**
* Calculate the hours passed between two time points
* @param time - The current time in seconds
* @param refTime - The reference time in seconds
* @returns The number of hours passed between the two time points
*/
private getHoursPassed;
}