import { SimpleChatModel, } from "@langchain/core/language_models/chat_models"; import { AIMessageChunk } from "@langchain/core/messages"; import { ChatGenerationChunk } from "@langchain/core/outputs"; import * as webllm from "@mlc-ai/web-llm"; /** * To use this model you need to have the `@mlc-ai/web-llm` module installed. * This can be installed using `npm install -S @mlc-ai/web-llm`. * * You can see a list of available model records here: * https://github.com/mlc-ai/web-llm/blob/main/src/config.ts * @example * ```typescript * // Initialize the ChatWebLLM model with the model record. * const model = new ChatWebLLM({ * model: "Phi-3-mini-4k-instruct-q4f16_1-MLC", * chatOptions: { * temperature: 0.5, * }, * }); * * // Call the model with a message and await the response. * const response = await model.invoke([ * new HumanMessage({ content: "My name is John." }), * ]); * ``` */ export class ChatWebLLM extends SimpleChatModel { static lc_name() { return "ChatWebLLM"; } constructor(inputs) { super(inputs); Object.defineProperty(this, "engine", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "appConfig", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "chatOptions", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "temperature", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "model", { enumerable: true, configurable: true, writable: true, value: void 0 }); this.appConfig = inputs.appConfig; this.chatOptions = inputs.chatOptions; this.model = inputs.model; this.temperature = inputs.temperature; this.engine = new webllm.MLCEngine({ appConfig: this.appConfig, }); } _llmType() { return "web-llm"; } async initialize(progressCallback) { if (progressCallback !== undefined) { this.engine.setInitProgressCallback(progressCallback); } await this.reload(this.model, this.chatOptions); } async reload(modelId, newChatOpts) { await this.engine.reload(modelId, newChatOpts); } async *_streamResponseChunks(messages, options, runManager) { const messagesInput = messages.map((message) => { if (typeof message.content !== "string") { throw new Error("ChatWebLLM does not support non-string message content in sessions."); } const langChainType = message._getType(); let role; if (langChainType === "ai") { role = "assistant"; } else if (langChainType === "human") { role = "user"; } else if (langChainType === "system") { role = "system"; } else { throw new Error("Function, tool, and generic messages are not supported."); } return { role, content: message.content, }; }); const stream = await this.engine.chat.completions.create({ stream: true, messages: messagesInput, stop: options.stop, logprobs: true, }); for await (const chunk of stream) { // Last chunk has undefined content const text = chunk.choices[0].delta.content ?? ""; yield new ChatGenerationChunk({ text, message: new AIMessageChunk({ content: text, additional_kwargs: { logprobs: chunk.choices[0].logprobs, finish_reason: chunk.choices[0].finish_reason, }, }), }); await runManager?.handleLLMNewToken(text); } } async _call(messages, options, runManager) { const chunks = []; for await (const chunk of this._streamResponseChunks(messages, options, runManager)) { chunks.push(chunk.text); } return chunks.join(""); } }