"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.TogetherAIEmbeddings = void 0; const env_1 = require("@langchain/core/utils/env"); const embeddings_1 = require("@langchain/core/embeddings"); const chunk_array_1 = require("@langchain/core/utils/chunk_array"); /** * Class for generating embeddings using the TogetherAI API. Extends the * Embeddings class and implements TogetherAIEmbeddingsParams. * @example * ```typescript * const embeddings = new TogetherAIEmbeddings({ * apiKey: process.env.TOGETHER_AI_API_KEY, // Default value * model: "togethercomputer/m2-bert-80M-8k-retrieval", // Default value * }); * const res = await embeddings.embedQuery( * "What would be a good company name a company that makes colorful socks?" * ); * ``` */ class TogetherAIEmbeddings extends embeddings_1.Embeddings { constructor(fields) { super(fields ?? {}); Object.defineProperty(this, "modelName", { enumerable: true, configurable: true, writable: true, value: "togethercomputer/m2-bert-80M-8k-retrieval" }); Object.defineProperty(this, "model", { enumerable: true, configurable: true, writable: true, value: "togethercomputer/m2-bert-80M-8k-retrieval" }); Object.defineProperty(this, "apiKey", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "batchSize", { enumerable: true, configurable: true, writable: true, value: 512 }); Object.defineProperty(this, "stripNewLines", { enumerable: true, configurable: true, writable: true, value: false }); Object.defineProperty(this, "timeout", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "embeddingsAPIUrl", { enumerable: true, configurable: true, writable: true, value: "https://api.together.xyz/api/v1/embeddings" }); const apiKey = fields?.apiKey ?? (0, env_1.getEnvironmentVariable)("TOGETHER_AI_API_KEY"); if (!apiKey) { throw new Error("TOGETHER_AI_API_KEY not found."); } this.apiKey = apiKey; this.modelName = fields?.model ?? fields?.modelName ?? this.model; this.model = this.modelName; this.timeout = fields?.timeout; this.batchSize = fields?.batchSize ?? this.batchSize; this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines; } constructHeaders() { return { accept: "application/json", "content-type": "application/json", Authorization: `Bearer ${this.apiKey}`, }; } constructBody(input) { const body = { model: this?.model, input, }; return body; } /** * Method to generate embeddings for an array of documents. Splits the * documents into batches and makes requests to the TogetherAI API to generate * embeddings. * @param texts Array of documents to generate embeddings for. * @returns Promise that resolves to a 2D array of embeddings for each document. */ async embedDocuments(texts) { const batches = (0, chunk_array_1.chunkArray)(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize); let batchResponses = []; for await (const batch of batches) { const batchRequests = batch.map((item) => this.embeddingWithRetry(item)); const response = await Promise.all(batchRequests); batchResponses = batchResponses.concat(response); } const embeddings = batchResponses.map((response) => response.data[0].embedding); return embeddings; } /** * Method to generate an embedding for a single document. Calls the * embeddingWithRetry method with the document as the input. * @param {string} text Document to generate an embedding for. * @returns {Promise} Promise that resolves to an embedding for the document. */ async embedQuery(text) { const { data } = await this.embeddingWithRetry(this.stripNewLines ? text.replace(/\n/g, " ") : text); return data[0].embedding; } /** * Private method to make a request to the TogetherAI API to generate * embeddings. Handles the retry logic and returns the response from the * API. * @param {string} input The input text to embed. * @returns Promise that resolves to the response from the API. * @TODO Figure out return type and statically type it. */ async embeddingWithRetry(input) { const body = JSON.stringify(this.constructBody(input)); const headers = this.constructHeaders(); return this.caller.call(async () => { const fetchResponse = await fetch(this.embeddingsAPIUrl, { method: "POST", headers, body, }); if (fetchResponse.status === 200) { return fetchResponse.json(); } throw new Error(`Error getting prompt completion from Together AI. ${JSON.stringify(await fetchResponse.json(), null, 2)}`); }); } } exports.TogetherAIEmbeddings = TogetherAIEmbeddings;