import { ChatPromptTemplate } from "@langchain/core/prompts"; import { StructuredToolInterface } from "@langchain/core/tools"; import { LanguageModelLike, ToolDefinition } from "@langchain/core/language_models/base"; import { AgentRunnableSequence } from "../agent.js"; import { ToolsAgentStep } from "./output_parser.js"; /** * Params used by the createOpenAIToolsAgent function. */ export type CreateToolCallingAgentParams = { /** * LLM to use as the agent. Should work with OpenAI tool calling, * so must either be an OpenAI model that supports that or a wrapper of * a different model that adds in equivalent support. */ llm: LanguageModelLike; /** Tools this agent has access to. */ tools: StructuredToolInterface[] | ToolDefinition[]; /** The prompt to use, must have an input key of `agent_scratchpad`. */ prompt: ChatPromptTemplate; /** * Whether to invoke the underlying model in streaming mode, * allowing streaming of intermediate steps. Defaults to true. */ streamRunnable?: boolean; }; /** * Create an agent that uses tools. * @param params Params required to create the agent. Includes an LLM, tools, and prompt. * @returns A runnable sequence representing an agent. It takes as input all the same input * variables as the prompt passed in does. It returns as output either an * AgentAction or AgentFinish. * @example * ```typescript * import { ChatAnthropic } from "@langchain/anthropic"; * import { ChatPromptTemplate, MessagesPlaceholder } from "@langchain/core/prompts"; * import { AgentExecutor, createToolCallingAgent } from "langchain/agents"; * * const prompt = ChatPromptTemplate.fromMessages( * [ * ["system", "You are a helpful assistant"], * ["placeholder", "{chat_history}"], * ["human", "{input}"], * ["placeholder", "{agent_scratchpad}"], * ] * ); * * * const llm = new ChatAnthropic({ * modelName: "claude-3-opus-20240229", * temperature: 0, * }); * * // Define the tools the agent will have access to. * const tools = [...]; * * const agent = createToolCallingAgent({ llm, tools, prompt }); * * const agentExecutor = new AgentExecutor({ agent, tools }); * * const result = await agentExecutor.invoke({input: "what is LangChain?"}); * * // Using with chat history * import { AIMessage, HumanMessage } from "@langchain/core/messages"; * * const result2 = await agentExecutor.invoke( * { * input: "what's my name?", * chat_history: [ * new HumanMessage({content: "hi! my name is bob"}), * new AIMessage({content: "Hello Bob! How can I assist you today?"}), * ], * } * ); * ``` */ export declare function createToolCallingAgent({ llm, tools, prompt, streamRunnable, }: CreateToolCallingAgentParams): AgentRunnableSequence<{ steps: ToolsAgentStep[]; }, import("@langchain/core/agents").AgentFinish | import("@langchain/core/agents").AgentAction[]>;