import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager"; import { type BaseLLMCallOptions, type BaseLLMParams, LLM } from "@langchain/core/language_models/llms"; import { GenerationChunk } from "@langchain/core/outputs"; /** * The FriendliParams interface defines the input parameters for * the Friendli class. */ export interface FriendliParams extends BaseLLMParams { /** * Model name to use. */ model?: string; /** * Base endpoint url. */ baseUrl?: string; /** * Friendli personal access token to run as. */ friendliToken?: string; /** * Friendli team ID to run as. */ friendliTeam?: string; /** * Number between -2.0 and 2.0. Positive values penalizes tokens that have been * sampled, taking into account their frequency in the preceding text. This * penalization diminishes the model's tendency to reproduce identical lines * verbatim. */ frequencyPenalty?: number; /** * Number between -2.0 and 2.0. Positive values penalizes tokens that have been * sampled at least once in the existing text. * presence_penalty: Optional[float] = None * The maximum number of tokens to generate. The length of your input tokens plus * `max_tokens` should not exceed the model's maximum length (e.g., 2048 for OpenAI * GPT-3) */ maxTokens?: number; /** * When one of the stop phrases appears in the generation result, the API will stop * generation. The phrase is included in the generated result. If you are using * beam search, all of the active beams should contain the stop phrase to terminate * generation. Before checking whether a stop phrase is included in the result, the * phrase is converted into tokens. */ stop?: string[]; /** * Sampling temperature. Smaller temperature makes the generation result closer to * greedy, argmax (i.e., `top_k = 1`) sampling. If it is `None`, then 1.0 is used. */ temperature?: number; /** * Tokens comprising the top `top_p` probability mass are kept for sampling. Numbers * between 0.0 (exclusive) and 1.0 (inclusive) are allowed. If it is `None`, then 1.0 * is used by default. */ topP?: number; /** * Additional kwargs to pass to the model. */ modelKwargs?: Record; } /** * The Friendli class is used to interact with Friendli inference Endpoint models. * This requires your Friendli Token and Friendli Team which is autoloaded if not specified. */ export declare class Friendli extends LLM { lc_serializable: boolean; static lc_name(): string; get lc_secrets(): { [key: string]: string; } | undefined; model: string; baseUrl: string; friendliToken?: string; friendliTeam?: string; frequencyPenalty?: number; maxTokens?: number; stop?: string[]; temperature?: number; topP?: number; modelKwargs?: Record; constructor(fields: FriendliParams); _llmType(): string; private constructHeaders; private constructBody; /** * Calls the Friendli endpoint and retrieves the result. * @param {string} prompt The input prompt. * @returns {Promise} A promise that resolves to the generated string. */ /** @ignore */ _call(prompt: string, _options: this["ParsedCallOptions"]): Promise; _streamResponseChunks(prompt: string, _options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): AsyncGenerator; }