import type { StructuredToolInterface } from "@langchain/core/tools"; import { BaseLLMOutputParser } from "@langchain/core/output_parsers"; import { AgentStep } from "@langchain/core/agents"; import { ChainValues } from "@langchain/core/utils/types"; import { ChatGeneration, Generation } from "@langchain/core/outputs"; import { BasePromptTemplate } from "@langchain/core/prompts"; import { Callbacks, BaseCallbackConfig } from "@langchain/core/callbacks/manager"; import { BaseChatModel } from "@langchain/core/language_models/chat_models"; import { AgentTrajectoryEvaluator, EvalOutputType, LLMEvalChainInput, LLMTrajectoryEvaluatorArgs, type ExtractLLMCallOptions } from "../base.js"; /** * A parser for the output of the TrajectoryEvalChain. */ export declare class TrajectoryOutputParser extends BaseLLMOutputParser { static lc_name(): string; lc_namespace: string[]; parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise; } /** * A chain for evaluating ReAct style agents. * * This chain is used to evaluate ReAct style agents by reasoning about * the sequence of actions taken and their outcomes. */ export declare class TrajectoryEvalChain extends AgentTrajectoryEvaluator { static lc_name(): string; criterionName?: string; evaluationName?: string; requiresInput: boolean; requiresReference: boolean; outputParser: TrajectoryOutputParser; static resolveTrajectoryPrompt(prompt?: BasePromptTemplate | undefined, agentTools?: StructuredToolInterface[]): BasePromptTemplate; /** * Get the description of the agent tools. * * @returns The description of the agent tools. */ static toolsDescription(agentTools: StructuredToolInterface[]): string; /** * Create a new TrajectoryEvalChain. * @param llm * @param agentTools - The tools used by the agent. * @param chainOptions - The options for the chain. */ static fromLLM(llm: BaseChatModel, agentTools?: StructuredToolInterface[], chainOptions?: Partial>): Promise; _prepareOutput(result: ChainValues): any; /** * Get the agent trajectory as a formatted string. * * @param steps - The agent trajectory. * @returns The formatted agent trajectory. */ getAgentTrajectory(steps: AgentStep[]): string; formatReference(reference?: string): string; _evaluateAgentTrajectory(args: LLMTrajectoryEvaluatorArgs, callOptions: ExtractLLMCallOptions, config?: Callbacks | BaseCallbackConfig): Promise; }