import { SignatureV4 } from "@smithy/signature-v4"; import { HttpRequest } from "@smithy/protocol-http"; import { EventStreamCodec } from "@smithy/eventstream-codec"; import { fromUtf8, toUtf8 } from "@smithy/util-utf8"; import { Sha256 } from "@aws-crypto/sha256-js"; import { BaseChatModel, } from "@langchain/core/language_models/chat_models"; import { isOpenAITool, } from "@langchain/core/language_models/base"; import { getEnvironmentVariable } from "@langchain/core/utils/env"; import { AIMessageChunk, AIMessage, ChatMessage, isAIMessage, } from "@langchain/core/messages"; import { ChatGenerationChunk, } from "@langchain/core/outputs"; import { isLangChainTool, isStructuredTool, } from "@langchain/core/utils/function_calling"; import { zodToJsonSchema } from "zod-to-json-schema"; import { BedrockLLMInputOutputAdapter, } from "../../utils/bedrock/index.js"; import { _toolsInParams, isAnthropicTool, } from "../../utils/bedrock/anthropic.js"; const AWS_REGIONS = [ "us", "sa", "me", "il", "eu", "cn", "ca", "ap", "af", "us-gov", ]; const ALLOWED_MODEL_PROVIDERS = [ "ai21", "anthropic", "amazon", "cohere", "meta", "mistral", ]; const PRELUDE_TOTAL_LENGTH_BYTES = 4; function convertOneMessageToText(message, humanPrompt, aiPrompt) { if (message._getType() === "human") { return `${humanPrompt} ${message.content}`; } else if (message._getType() === "ai") { return `${aiPrompt} ${message.content}`; } else if (message._getType() === "system") { return `${humanPrompt} ${message.content}`; } else if (message._getType() === "function") { return `${humanPrompt} ${message.content}`; } else if (ChatMessage.isInstance(message)) { return `\n\n${message.role[0].toUpperCase() + message.role.slice(1)}: {message.content}`; } throw new Error(`Unknown role: ${message._getType()}`); } export function convertMessagesToPromptAnthropic(messages, humanPrompt = "\n\nHuman:", aiPrompt = "\n\nAssistant:") { const messagesCopy = [...messages]; if (messagesCopy.length === 0 || messagesCopy[messagesCopy.length - 1]._getType() !== "ai") { messagesCopy.push(new AIMessage({ content: "" })); } return messagesCopy .map((message) => convertOneMessageToText(message, humanPrompt, aiPrompt)) .join(""); } /** * Function that converts an array of messages into a single string prompt * that can be used as input for a chat model. It delegates the conversion * logic to the appropriate provider-specific function. * @param messages Array of messages to be converted. * @param options Options to be used during the conversion. * @returns A string prompt that can be used as input for a chat model. */ export function convertMessagesToPrompt(messages, provider) { if (provider === "anthropic") { return convertMessagesToPromptAnthropic(messages); } throw new Error(`Provider ${provider} does not support chat.`); } function formatTools(tools) { if (!tools || !tools.length) { return []; } if (tools.every(isLangChainTool)) { return tools.map((tc) => ({ name: tc.name, description: tc.description, input_schema: zodToJsonSchema(tc.schema), })); } if (tools.every(isOpenAITool)) { return tools.map((tc) => ({ name: tc.function.name, description: tc.function.description, input_schema: tc.function.parameters, })); } if (tools.every(isAnthropicTool)) { return tools; } if (tools.some(isStructuredTool) || tools.some(isOpenAITool) || tools.some(isAnthropicTool)) { throw new Error("All tools passed to BedrockChat must be of the same type."); } throw new Error("Invalid tool format received."); } /** * AWS Bedrock chat model integration. * * Setup: * Install `@langchain/community` and set the following environment variables: * * ```bash * npm install @langchain/openai * export AWS_REGION="your-aws-region" * export AWS_SECRET_ACCESS_KEY="your-aws-secret-access-key" * export AWS_ACCESS_KEY_ID="your-aws-access-key-id" * ``` * * ## [Constructor args](/classes/langchain_community_chat_models_bedrock.BedrockChat.html#constructor) * * ## [Runtime args](/interfaces/langchain_community_chat_models_bedrock_web.BedrockChatCallOptions.html) * * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc. * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below: * * ```typescript * // When calling `.bind`, call options should be passed via the first argument * const llmWithArgsBound = llm.bind({ * stop: ["\n"], * tools: [...], * }); * * // When calling `.bindTools`, call options should be passed via the second argument * const llmWithTools = llm.bindTools( * [...], * { * stop: ["stop on this token!"], * } * ); * ``` * * ## Examples * *
* Instantiate * * ```typescript * import { BedrockChat } from '@langchain/community/chat_models/bedrock/web'; * * const llm = new BedrockChat({ * region: process.env.AWS_REGION, * maxRetries: 0, * model: "anthropic.claude-3-5-sonnet-20240620-v1:0", * temperature: 0, * maxTokens: undefined, * // other params... * }); * * // You can also pass credentials in explicitly: * const llmWithCredentials = new BedrockChat({ * region: process.env.BEDROCK_AWS_REGION, * model: "anthropic.claude-3-5-sonnet-20240620-v1:0", * credentials: { * secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY!, * accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID!, * }, * }); * ``` *
* *
* *
* Invoking * * ```typescript * const input = `Translate "I love programming" into French.`; * * // Models also accept a list of chat messages or a formatted prompt * const result = await llm.invoke(input); * console.log(result); * ``` * * ```txt * AIMessage { * "content": "Here's the translation to French:\n\nJ'adore la programmation.", * "additional_kwargs": { * "id": "msg_bdrk_01HCZHa2mKbMZeTeHjLDd286" * }, * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": "end_turn", * "stop_sequence": null, * "usage": { * "input_tokens": 25, * "output_tokens": 19 * } * }, * "tool_calls": [], * "invalid_tool_calls": [] * } * ``` *
* *
* *
* Streaming Chunks * * ```typescript * for await (const chunk of await llm.stream(input)) { * console.log(chunk); * } * ``` * * ```txt * AIMessageChunk { * "content": "", * "additional_kwargs": { * "id": "msg_bdrk_01RhFuGR9uJ2bj5GbdAma4y6" * }, * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": null, * "stop_sequence": null * }, * } * AIMessageChunk { * "content": "J", * } * AIMessageChunk { * "content": "'adore la", * } * AIMessageChunk { * "content": " programmation.", * } * AIMessageChunk { * "content": "", * "additional_kwargs": { * "stop_reason": "end_turn", * "stop_sequence": null * }, * } * AIMessageChunk { * "content": "", * "response_metadata": { * "amazon-bedrock-invocationMetrics": { * "inputTokenCount": 25, * "outputTokenCount": 11, * "invocationLatency": 659, * "firstByteLatency": 506 * } * }, * "usage_metadata": { * "input_tokens": 25, * "output_tokens": 11, * "total_tokens": 36 * } * } * ``` *
* *
* *
* Aggregate Streamed Chunks * * ```typescript * import { AIMessageChunk } from '@langchain/core/messages'; * import { concat } from '@langchain/core/utils/stream'; * * const stream = await llm.stream(input); * let full: AIMessageChunk | undefined; * for await (const chunk of stream) { * full = !full ? chunk : concat(full, chunk); * } * console.log(full); * ``` * * ```txt * AIMessageChunk { * "content": "J'adore la programmation.", * "additional_kwargs": { * "id": "msg_bdrk_017b6PuBybA51P5LZ9K6gZHm", * "stop_reason": "end_turn", * "stop_sequence": null * }, * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": null, * "stop_sequence": null, * "amazon-bedrock-invocationMetrics": { * "inputTokenCount": 25, * "outputTokenCount": 11, * "invocationLatency": 1181, * "firstByteLatency": 1177 * } * }, * "usage_metadata": { * "input_tokens": 25, * "output_tokens": 11, * "total_tokens": 36 * } * } * ``` *
* *
* *
* Bind tools * * ```typescript * import { z } from 'zod'; * import { AIMessage } from '@langchain/core/messages'; * * const GetWeather = { * name: "GetWeather", * description: "Get the current weather in a given location", * schema: z.object({ * location: z.string().describe("The city and state, e.g. San Francisco, CA") * }), * } * * const GetPopulation = { * name: "GetPopulation", * description: "Get the current population in a given location", * schema: z.object({ * location: z.string().describe("The city and state, e.g. San Francisco, CA") * }), * } * * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]); * const aiMsg: AIMessage = await llmWithTools.invoke( * "Which city is hotter today and which is bigger: LA or NY?" * ); * console.log(aiMsg.tool_calls); * ``` * * ```txt * [ * { * name: 'GetWeather', * args: { location: 'Los Angeles, CA' }, * id: 'toolu_bdrk_01R2daqwHR931r4baVNzbe38', * type: 'tool_call' * }, * { * name: 'GetWeather', * args: { location: 'New York, NY' }, * id: 'toolu_bdrk_01WDadwNc7PGqVZvCN7Dr7eD', * type: 'tool_call' * }, * { * name: 'GetPopulation', * args: { location: 'Los Angeles, CA' }, * id: 'toolu_bdrk_014b8zLkpAgpxrPfewKinJFc', * type: 'tool_call' * }, * { * name: 'GetPopulation', * args: { location: 'New York, NY' }, * id: 'toolu_bdrk_01Tt8K2MUP15kNuMDFCLEFKN', * type: 'tool_call' * } * ] * ``` *
* *
* *
* Structured Output * * ```typescript * const Joke = z.object({ * setup: z.string().describe("The setup of the joke"), * punchline: z.string().describe("The punchline to the joke"), * rating: z.number().optional().describe("How funny the joke is, from 1 to 10") * }).describe('Joke to tell user.'); * * const structuredLlm = llm.withStructuredOutput(Joke); * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats"); * console.log(jokeResult); * ``` * * ```txt * { * setup: "Why don't cats play poker in the jungle?", * punchline: 'Too many cheetahs!' * } * ``` *
* *
* *
* Response Metadata * * ```typescript * const aiMsgForResponseMetadata = await llm.invoke(input); * console.log(aiMsgForResponseMetadata.response_metadata); * ``` * * ```txt * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": "end_turn", * "stop_sequence": null, * "usage": { * "input_tokens": 25, * "output_tokens": 19 * } * } * ``` *
*/ export class BedrockChat extends BaseChatModel { get lc_aliases() { return { model: "model_id", region: "region_name", }; } get lc_secrets() { return { "credentials.accessKeyId": "AWS_ACCESS_KEY_ID", "credentials.secretAccessKey": "AWS_SECRET_ACCESS_KEY", "credentials.sessionToken": "AWS_SECRET_ACCESS_KEY", awsAccessKeyId: "AWS_ACCESS_KEY_ID", awsSecretAccessKey: "AWS_SECRET_ACCESS_KEY", awsSessionToken: "AWS_SESSION_TOKEN", }; } get lc_attributes() { return { region: this.region }; } _identifyingParams() { return { model: this.model, }; } _llmType() { return "bedrock"; } static lc_name() { return "BedrockChat"; } constructor(fields) { const awsAccessKeyId = fields?.awsAccessKeyId ?? getEnvironmentVariable("AWS_ACCESS_KEY_ID"); const awsSecretAccessKey = fields?.awsSecretAccessKey ?? getEnvironmentVariable("AWS_SECRET_ACCESS_KEY"); const awsSessionToken = fields?.awsSessionToken ?? getEnvironmentVariable("AWS_SESSION_TOKEN"); let credentials = fields?.credentials; if (credentials === undefined) { if (awsAccessKeyId === undefined || awsSecretAccessKey === undefined) { throw new Error("Please set your AWS credentials in the 'credentials' field or set env vars AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, and optionally AWS_SESSION_TOKEN."); } credentials = { accessKeyId: awsAccessKeyId, secretAccessKey: awsSecretAccessKey, sessionToken: awsSessionToken, }; } // eslint-disable-next-line no-param-reassign fields = { ...fields, awsAccessKeyId, awsSecretAccessKey, awsSessionToken }; super(fields); Object.defineProperty(this, "model", { enumerable: true, configurable: true, writable: true, value: "amazon.titan-tg1-large" }); Object.defineProperty(this, "modelProvider", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "region", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "credentials", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "temperature", { enumerable: true, configurable: true, writable: true, value: undefined }); Object.defineProperty(this, "maxTokens", { enumerable: true, configurable: true, writable: true, value: undefined }); Object.defineProperty(this, "fetchFn", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "endpointHost", { enumerable: true, configurable: true, writable: true, value: void 0 }); /** @deprecated Use as a call option using .bind() instead. */ Object.defineProperty(this, "stopSequences", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "modelKwargs", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "codec", { enumerable: true, configurable: true, writable: true, value: new EventStreamCodec(toUtf8, fromUtf8) }); Object.defineProperty(this, "streaming", { enumerable: true, configurable: true, writable: true, value: false }); Object.defineProperty(this, "usesMessagesApi", { enumerable: true, configurable: true, writable: true, value: false }); Object.defineProperty(this, "lc_serializable", { enumerable: true, configurable: true, writable: true, value: true }); Object.defineProperty(this, "trace", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "guardrailIdentifier", { enumerable: true, configurable: true, writable: true, value: "" }); Object.defineProperty(this, "guardrailVersion", { enumerable: true, configurable: true, writable: true, value: "" }); Object.defineProperty(this, "guardrailConfig", { enumerable: true, configurable: true, writable: true, value: void 0 }); this.model = fields?.model ?? this.model; this.modelProvider = getModelProvider(this.model); if (!ALLOWED_MODEL_PROVIDERS.includes(this.modelProvider)) { throw new Error(`Unknown model provider: '${this.modelProvider}', only these are supported: ${ALLOWED_MODEL_PROVIDERS}`); } const region = fields?.region ?? getEnvironmentVariable("AWS_DEFAULT_REGION"); if (!region) { throw new Error("Please set the AWS_DEFAULT_REGION environment variable or pass it to the constructor as the region field."); } this.region = region; this.credentials = credentials; this.temperature = fields?.temperature ?? this.temperature; this.maxTokens = fields?.maxTokens ?? this.maxTokens; this.fetchFn = fields?.fetchFn ?? fetch.bind(globalThis); this.endpointHost = fields?.endpointHost ?? fields?.endpointUrl; this.stopSequences = fields?.stopSequences; this.modelKwargs = fields?.modelKwargs; this.streaming = fields?.streaming ?? this.streaming; this.usesMessagesApi = canUseMessagesApi(this.model); this.trace = fields?.trace ?? this.trace; this.guardrailVersion = fields?.guardrailVersion ?? this.guardrailVersion; this.guardrailIdentifier = fields?.guardrailIdentifier ?? this.guardrailIdentifier; this.guardrailConfig = fields?.guardrailConfig; } invocationParams(options) { if (options?.tool_choice) { throw new Error("'tool_choice' call option is not supported by BedrockChat."); } return { tools: options?.tools ? formatTools(options.tools) : undefined, temperature: this.temperature, max_tokens: this.maxTokens, stop: options?.stop ?? this.stopSequences, modelKwargs: this.modelKwargs, guardrailConfig: this.guardrailConfig, }; } getLsParams(options) { const params = this.invocationParams(options); return { ls_provider: "bedrock", ls_model_name: this.model, ls_model_type: "chat", ls_temperature: params.temperature ?? undefined, ls_max_tokens: params.max_tokens ?? undefined, ls_stop: options.stop, }; } async _generate(messages, options, runManager) { if (this.streaming) { const stream = this._streamResponseChunks(messages, options, runManager); let finalResult; for await (const chunk of stream) { if (finalResult === undefined) { finalResult = chunk; } else { finalResult = finalResult.concat(chunk); } } if (finalResult === undefined) { throw new Error("Could not parse final output from Bedrock streaming call."); } return { generations: [finalResult], llmOutput: finalResult.generationInfo, }; } return this._generateNonStreaming(messages, options, runManager); } async _generateNonStreaming(messages, options, _runManager) { const service = "bedrock-runtime"; const endpointHost = this.endpointHost ?? `${service}.${this.region}.amazonaws.com`; const provider = this.modelProvider; const response = await this._signedFetch(messages, options, { bedrockMethod: "invoke", endpointHost, provider, }); const json = await response.json(); if (!response.ok) { throw new Error(`Error ${response.status}: ${json.message ?? JSON.stringify(json)}`); } if (this.usesMessagesApi) { const outputGeneration = BedrockLLMInputOutputAdapter.prepareMessagesOutput(provider, json); if (outputGeneration === undefined) { throw new Error("Failed to parse output generation."); } return { generations: [outputGeneration], llmOutput: outputGeneration.generationInfo, }; } else { const text = BedrockLLMInputOutputAdapter.prepareOutput(provider, json); return { generations: [{ text, message: new AIMessage(text) }] }; } } async _signedFetch(messages, options, fields) { const { bedrockMethod, endpointHost, provider } = fields; const { max_tokens, temperature, stop, modelKwargs, guardrailConfig, tools, } = this.invocationParams(options); const inputBody = this.usesMessagesApi ? BedrockLLMInputOutputAdapter.prepareMessagesInput(provider, messages, max_tokens, temperature, stop, modelKwargs, guardrailConfig, tools) : BedrockLLMInputOutputAdapter.prepareInput(provider, convertMessagesToPromptAnthropic(messages), max_tokens, temperature, stop, modelKwargs, fields.bedrockMethod, guardrailConfig); const url = new URL(`https://${endpointHost}/model/${this.model}/${bedrockMethod}`); const request = new HttpRequest({ hostname: url.hostname, path: url.pathname, protocol: url.protocol, method: "POST", body: JSON.stringify(inputBody), query: Object.fromEntries(url.searchParams.entries()), headers: { // host is required by AWS Signature V4: https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html host: url.host, accept: "application/json", "content-type": "application/json", ...(this.trace && this.guardrailIdentifier && this.guardrailVersion && { "X-Amzn-Bedrock-Trace": this.trace, "X-Amzn-Bedrock-GuardrailIdentifier": this.guardrailIdentifier, "X-Amzn-Bedrock-GuardrailVersion": this.guardrailVersion, }), }, }); const signer = new SignatureV4({ credentials: this.credentials, service: "bedrock", region: this.region, sha256: Sha256, }); const signedRequest = await signer.sign(request); // Send request to AWS using the low-level fetch API const response = await this.caller.callWithOptions({ signal: options.signal }, async () => this.fetchFn(url, { headers: signedRequest.headers, body: signedRequest.body, method: signedRequest.method, })); return response; } async *_streamResponseChunks(messages, options, runManager) { const provider = this.modelProvider; const service = "bedrock-runtime"; const endpointHost = this.endpointHost ?? `${service}.${this.region}.amazonaws.com`; const bedrockMethod = provider === "anthropic" || provider === "cohere" || provider === "meta" || provider === "mistral" ? "invoke-with-response-stream" : "invoke"; const response = await this._signedFetch(messages, options, { bedrockMethod, endpointHost, provider, }); if (response.status < 200 || response.status >= 300) { throw Error(`Failed to access underlying url '${endpointHost}': got ${response.status} ${response.statusText}: ${await response.text()}`); } if (provider === "anthropic" || provider === "cohere" || provider === "meta" || provider === "mistral") { const toolsInParams = _toolsInParams(options); const reader = response.body?.getReader(); const decoder = new TextDecoder(); for await (const chunk of this._readChunks(reader)) { const event = this.codec.decode(chunk); if ((event.headers[":event-type"] !== undefined && event.headers[":event-type"].value !== "chunk") || event.headers[":content-type"].value !== "application/json") { throw Error(`Failed to get event chunk: got ${chunk}`); } const body = JSON.parse(decoder.decode(event.body)); if (body.message) { throw new Error(body.message); } if (body.bytes !== undefined) { const chunkResult = JSON.parse(decoder.decode(Uint8Array.from(atob(body.bytes), (m) => m.codePointAt(0) ?? 0))); if (this.usesMessagesApi) { const chunk = BedrockLLMInputOutputAdapter.prepareMessagesOutput(provider, chunkResult, { // Content should _ONLY_ be coerced if tools are not in params // If they are, we need content to be of type MessageTypeComplex // so the tools can be passed through. coerceContentToString: !toolsInParams, }); if (chunk === undefined) { continue; } if (provider === "anthropic" && chunk.generationInfo?.usage !== undefined) { // Avoid bad aggregation in chunks, rely on final Bedrock data delete chunk.generationInfo.usage; } const finalMetrics = chunk.generationInfo?.["amazon-bedrock-invocationMetrics"]; if (finalMetrics != null && typeof finalMetrics === "object" && isAIMessage(chunk.message)) { chunk.message.usage_metadata = { input_tokens: finalMetrics.inputTokenCount, output_tokens: finalMetrics.outputTokenCount, total_tokens: finalMetrics.inputTokenCount + finalMetrics.outputTokenCount, }; } if (isChatGenerationChunk(chunk)) { yield chunk; } // eslint-disable-next-line no-void void runManager?.handleLLMNewToken(chunk.text); } else { const text = BedrockLLMInputOutputAdapter.prepareOutput(provider, chunkResult); yield new ChatGenerationChunk({ text, message: new AIMessageChunk({ content: text }), }); // eslint-disable-next-line no-void void runManager?.handleLLMNewToken(text); } } } } else { const json = await response.json(); const text = BedrockLLMInputOutputAdapter.prepareOutput(provider, json); yield new ChatGenerationChunk({ text, message: new AIMessageChunk({ content: text }), }); // eslint-disable-next-line no-void void runManager?.handleLLMNewToken(text); } } // eslint-disable-next-line @typescript-eslint/no-explicit-any _readChunks(reader) { function _concatChunks(a, b) { const newBuffer = new Uint8Array(a.length + b.length); newBuffer.set(a); newBuffer.set(b, a.length); return newBuffer; } function getMessageLength(buffer) { if (buffer.byteLength < PRELUDE_TOTAL_LENGTH_BYTES) return 0; const view = new DataView(buffer.buffer, buffer.byteOffset, buffer.byteLength); return view.getUint32(0, false); } return { async *[Symbol.asyncIterator]() { let readResult = await reader.read(); let buffer = new Uint8Array(0); while (!readResult.done) { const chunk = readResult.value; buffer = _concatChunks(buffer, chunk); let messageLength = getMessageLength(buffer); while (buffer.byteLength >= PRELUDE_TOTAL_LENGTH_BYTES && buffer.byteLength >= messageLength) { yield buffer.slice(0, messageLength); buffer = buffer.slice(messageLength); messageLength = getMessageLength(buffer); } readResult = await reader.read(); } }, }; } _combineLLMOutput() { return {}; } bindTools(tools, _kwargs) { const provider = this.modelProvider; if (provider !== "anthropic") { throw new Error("Currently, tool calling through Bedrock is only supported for Anthropic models."); } return this.bind({ tools: formatTools(tools), }); } } function isChatGenerationChunk(x) { return (x !== undefined && typeof x.concat === "function"); } function canUseMessagesApi(model) { const modelProviderName = getModelProvider(model); if (modelProviderName === "anthropic" && !model.includes("claude-v2") && !model.includes("claude-instant-v1")) { return true; } if (modelProviderName === "cohere") { if (model.includes("command-r-v1")) { return true; } if (model.includes("command-r-plus-v1")) { return true; } } return false; } function isInferenceModel(modelId) { const parts = modelId.split("."); return AWS_REGIONS.some((region) => parts[0] === region); } function getModelProvider(modelId) { const parts = modelId.split("."); if (isInferenceModel(modelId)) { return parts[1]; } else { return parts[0]; } } /** * @deprecated Use `BedrockChat` instead. */ export const ChatBedrock = BedrockChat;