"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); __setModuleDefault(result, mod); return result; }; Object.defineProperty(exports, "__esModule", { value: true }); exports.ChatWebLLM = void 0; const chat_models_1 = require("@langchain/core/language_models/chat_models"); const messages_1 = require("@langchain/core/messages"); const outputs_1 = require("@langchain/core/outputs"); const webllm = __importStar(require("@mlc-ai/web-llm")); /** * To use this model you need to have the `@mlc-ai/web-llm` module installed. * This can be installed using `npm install -S @mlc-ai/web-llm`. * * You can see a list of available model records here: * https://github.com/mlc-ai/web-llm/blob/main/src/config.ts * @example * ```typescript * // Initialize the ChatWebLLM model with the model record. * const model = new ChatWebLLM({ * model: "Phi-3-mini-4k-instruct-q4f16_1-MLC", * chatOptions: { * temperature: 0.5, * }, * }); * * // Call the model with a message and await the response. * const response = await model.invoke([ * new HumanMessage({ content: "My name is John." }), * ]); * ``` */ class ChatWebLLM extends chat_models_1.SimpleChatModel { static lc_name() { return "ChatWebLLM"; } constructor(inputs) { super(inputs); Object.defineProperty(this, "engine", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "appConfig", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "chatOptions", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "temperature", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "model", { enumerable: true, configurable: true, writable: true, value: void 0 }); this.appConfig = inputs.appConfig; this.chatOptions = inputs.chatOptions; this.model = inputs.model; this.temperature = inputs.temperature; this.engine = new webllm.MLCEngine({ appConfig: this.appConfig, }); } _llmType() { return "web-llm"; } async initialize(progressCallback) { if (progressCallback !== undefined) { this.engine.setInitProgressCallback(progressCallback); } await this.reload(this.model, this.chatOptions); } async reload(modelId, newChatOpts) { await this.engine.reload(modelId, newChatOpts); } async *_streamResponseChunks(messages, options, runManager) { const messagesInput = messages.map((message) => { if (typeof message.content !== "string") { throw new Error("ChatWebLLM does not support non-string message content in sessions."); } const langChainType = message._getType(); let role; if (langChainType === "ai") { role = "assistant"; } else if (langChainType === "human") { role = "user"; } else if (langChainType === "system") { role = "system"; } else { throw new Error("Function, tool, and generic messages are not supported."); } return { role, content: message.content, }; }); const stream = await this.engine.chat.completions.create({ stream: true, messages: messagesInput, stop: options.stop, logprobs: true, }); for await (const chunk of stream) { // Last chunk has undefined content const text = chunk.choices[0].delta.content ?? ""; yield new outputs_1.ChatGenerationChunk({ text, message: new messages_1.AIMessageChunk({ content: text, additional_kwargs: { logprobs: chunk.choices[0].logprobs, finish_reason: chunk.choices[0].finish_reason, }, }), }); await runManager?.handleLLMNewToken(text); } } async _call(messages, options, runManager) { const chunks = []; for await (const chunk of this._streamResponseChunks(messages, options, runManager)) { chunks.push(chunk.text); } return chunks.join(""); } } exports.ChatWebLLM = ChatWebLLM;