"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.RaycastAI = void 0; const api_1 = require("@raycast/api"); const llms_1 = require("@langchain/core/language_models/llms"); const wait = (ms) => new Promise((resolve) => { setTimeout(resolve, ms); }); /** * The RaycastAI class, which extends the LLM class and implements the RaycastAIInput interface. */ class RaycastAI extends llms_1.LLM { /** * Creates a new instance of the RaycastAI class. * @param {RaycastAIInput} fields The input parameters for the RaycastAI class. * @throws {Error} If the Raycast AI environment is not accessible. */ constructor(fields) { super(fields ?? {}); Object.defineProperty(this, "lc_serializable", { enumerable: true, configurable: true, writable: true, value: true }); /** * The model to use for generating text. */ Object.defineProperty(this, "model", { enumerable: true, configurable: true, writable: true, value: void 0 }); /** * The creativity parameter, also known as the "temperature". */ Object.defineProperty(this, "creativity", { enumerable: true, configurable: true, writable: true, value: void 0 }); /** * The rate limit for API calls, in requests per minute. */ Object.defineProperty(this, "rateLimitPerMinute", { enumerable: true, configurable: true, writable: true, value: void 0 }); /** * The timestamp of the last API call, used to enforce the rate limit. */ Object.defineProperty(this, "lastCallTimestamp", { enumerable: true, configurable: true, writable: true, value: 0 }); if (!api_1.environment.canAccess(api_1.AI)) { throw new Error("Raycast AI environment is not accessible."); } if (fields.model === undefined) { throw new Error(`You must provide a "model" field in your params.`); } this.model = fields.model; this.creativity = fields.creativity ?? 0.5; this.rateLimitPerMinute = fields.rateLimitPerMinute ?? 10; } /** * Returns the type of the LLM, which is "raycast_ai". * @return {string} The type of the LLM. * @ignore */ _llmType() { return "raycast_ai"; } /** * Calls AI.ask with the given prompt and returns the generated text. * @param {string} prompt The prompt to generate text from. * @return {Promise} A Promise that resolves to the generated text. * @ignore */ async _call(prompt, options) { const response = await this.caller.call(async () => { // Rate limit calls to Raycast AI const now = Date.now(); const timeSinceLastCall = now - this.lastCallTimestamp; const timeToWait = (60 / this.rateLimitPerMinute) * 1000 - timeSinceLastCall; if (timeToWait > 0) { await wait(timeToWait); } return await api_1.AI.ask(prompt, { model: this.model, creativity: this.creativity, signal: options.signal, }); }); // Since Raycast AI returns the response directly, no need for output transformation return response; } } exports.RaycastAI = RaycastAI;