import * as uuid from "uuid";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
/**
* Chroma vector store integration.
*
* Setup:
* Install `@langchain/community` and `chromadb`.
*
* ```bash
* npm install @langchain/community chromadb
* ```
*
* ## [Constructor args](https://api.js.langchain.com/classes/langchain_community_vectorstores_chroma.Chroma.html#constructor)
*
*
* Instantiate
*
* ```typescript
* import { Chroma } from '@langchain/community/vectorstores/chroma';
* // Or other embeddings
* import { OpenAIEmbeddings } from '@langchain/openai';
*
* const embeddings = new OpenAIEmbeddings({
* model: "text-embedding-3-small",
* })
*
* const vectorStore = new Chroma(
* embeddings,
* {
* collectionName: "foo",
* url: "http://localhost:8000", // URL of the Chroma server
* }
* );
* ```
*
*
*
*
*
* Add documents
*
* ```typescript
* import type { Document } from '@langchain/core/documents';
*
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
*
* const documents: Document[] = [document1, document2, document3];
* const ids = ["1", "2", "3"];
* await vectorStore.addDocuments(documents, { ids });
* ```
*
*
*
*
*
* Delete documents
*
* ```typescript
* await vectorStore.delete({ ids: ["3"] });
* ```
*
*
*
*
*
* Similarity search
*
* ```typescript
* const results = await vectorStore.similaritySearch("thud", 1);
* for (const doc of results) {
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * thud [{"baz":"bar"}]
* ```
*
*
*
*
*
*
* Similarity search with filter
*
* ```typescript
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
*
* for (const doc of resultsWithFilter) {
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * foo [{"baz":"bar"}]
* ```
*
*
*
*
*
*
* Similarity search with score
*
* ```typescript
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
* for (const [doc, score] of resultsWithScore) {
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
* ```
*
*
*
*
*
* As a retriever
*
* ```typescript
* const retriever = vectorStore.asRetriever({
* searchType: "mmr", // Leave blank for standard similarity search
* k: 1,
* });
* const resultAsRetriever = await retriever.invoke("thud");
* console.log(resultAsRetriever);
*
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
* ```
*
*
*
*/
export class Chroma extends VectorStore {
_vectorstoreType() {
return "chroma";
}
constructor(embeddings, args) {
super(embeddings, args);
Object.defineProperty(this, "index", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "collection", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "collectionName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "collectionMetadata", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "numDimensions", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "clientParams", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "url", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "filter", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.numDimensions = args.numDimensions;
this.embeddings = embeddings;
this.collectionName = ensureCollectionName(args.collectionName);
this.collectionMetadata = args.collectionMetadata;
this.clientParams = args.clientParams;
if ("index" in args) {
this.index = args.index;
}
else if ("url" in args) {
this.url = args.url || "http://localhost:8000";
}
this.filter = args.filter;
}
/**
* Adds documents to the Chroma database. The documents are first
* converted to vectors using the `embeddings` instance, and then added to
* the database.
* @param documents An array of `Document` instances to be added to the database.
* @param options Optional. An object containing an array of `ids` for the documents.
* @returns A promise that resolves when the documents have been added to the database.
*/
async addDocuments(documents, options) {
const texts = documents.map(({ pageContent }) => pageContent);
return this.addVectors(await this.embeddings.embedDocuments(texts), documents, options);
}
/**
* Ensures that a collection exists in the Chroma database. If the
* collection does not exist, it is created.
* @returns A promise that resolves with the `Collection` instance.
*/
async ensureCollection() {
if (!this.collection) {
if (!this.index) {
const chromaClient = new (await Chroma.imports()).ChromaClient({
path: this.url,
...(this.clientParams ?? {}),
});
this.index = chromaClient;
}
try {
this.collection = await this.index.getOrCreateCollection({
name: this.collectionName,
...(this.collectionMetadata && { metadata: this.collectionMetadata }),
});
}
catch (err) {
throw new Error(`Chroma getOrCreateCollection error: ${err}`);
}
}
return this.collection;
}
/**
* Adds vectors to the Chroma database. The vectors are associated with
* the provided documents.
* @param vectors An array of vectors to be added to the database.
* @param documents An array of `Document` instances associated with the vectors.
* @param options Optional. An object containing an array of `ids` for the vectors.
* @returns A promise that resolves with an array of document IDs when the vectors have been added to the database.
*/
async addVectors(vectors, documents, options) {
if (vectors.length === 0) {
return [];
}
if (this.numDimensions === undefined) {
this.numDimensions = vectors[0].length;
}
if (vectors.length !== documents.length) {
throw new Error(`Vectors and metadatas must have the same length`);
}
if (vectors[0].length !== this.numDimensions) {
throw new Error(`Vectors must have the same length as the number of dimensions (${this.numDimensions})`);
}
const documentIds = options?.ids ?? Array.from({ length: vectors.length }, () => uuid.v1());
const collection = await this.ensureCollection();
const mappedMetadatas = documents.map(({ metadata }) => {
let locFrom;
let locTo;
if (metadata?.loc) {
if (metadata.loc.lines?.from !== undefined)
locFrom = metadata.loc.lines.from;
if (metadata.loc.lines?.to !== undefined)
locTo = metadata.loc.lines.to;
}
const newMetadata = {
...metadata,
...(locFrom !== undefined && { locFrom }),
...(locTo !== undefined && { locTo }),
};
if (newMetadata.loc)
delete newMetadata.loc;
return newMetadata;
});
await collection.upsert({
ids: documentIds,
embeddings: vectors,
metadatas: mappedMetadatas,
documents: documents.map(({ pageContent }) => pageContent),
});
return documentIds;
}
/**
* Deletes documents from the Chroma database. The documents to be deleted
* can be specified by providing an array of `ids` or a `filter` object.
* @param params An object containing either an array of `ids` of the documents to be deleted or a `filter` object to specify the documents to be deleted.
* @returns A promise that resolves when the specified documents have been deleted from the database.
*/
async delete(params) {
const collection = await this.ensureCollection();
if (Array.isArray(params.ids)) {
await collection.delete({ ids: params.ids });
}
else if (params.filter) {
await collection.delete({
where: { ...params.filter },
});
}
else {
throw new Error(`You must provide one of "ids or "filter".`);
}
}
/**
* Searches for vectors in the Chroma database that are similar to the
* provided query vector. The search can be filtered using the provided
* `filter` object or the `filter` property of the `Chroma` instance.
* @param query The query vector.
* @param k The number of similar vectors to return.
* @param filter Optional. A `filter` object to filter the search results.
* @returns A promise that resolves with an array of tuples, each containing a `Document` instance and a similarity score.
*/
async similaritySearchVectorWithScore(query, k, filter) {
if (filter && this.filter) {
throw new Error("cannot provide both `filter` and `this.filter`");
}
const _filter = filter ?? this.filter;
const collection = await this.ensureCollection();
// similaritySearchVectorWithScore supports one query vector at a time
// chroma supports multiple query vectors at a time
const result = await collection.query({
queryEmbeddings: query,
nResults: k,
where: { ..._filter },
});
const { ids, distances, documents, metadatas } = result;
if (!ids || !distances || !documents || !metadatas) {
return [];
}
// get the result data from the first and only query vector
const [firstIds] = ids;
const [firstDistances] = distances;
const [firstDocuments] = documents;
const [firstMetadatas] = metadatas;
const results = [];
for (let i = 0; i < firstIds.length; i += 1) {
let metadata = firstMetadatas?.[i] ?? {};
if (metadata.locFrom && metadata.locTo) {
metadata = {
...metadata,
loc: {
lines: {
from: metadata.locFrom,
to: metadata.locTo,
},
},
};
delete metadata.locFrom;
delete metadata.locTo;
}
results.push([
new Document({
pageContent: firstDocuments?.[i] ?? "",
metadata,
}),
firstDistances[i],
]);
}
return results;
}
/**
* Creates a new `Chroma` instance from an array of text strings. The text
* strings are converted to `Document` instances and added to the Chroma
* database.
* @param texts An array of text strings.
* @param metadatas An array of metadata objects or a single metadata object. If an array is provided, it must have the same length as the `texts` array.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
* @returns A promise that resolves with a new `Chroma` instance.
*/
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return this.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Creates a new `Chroma` instance from an array of `Document` instances.
* The documents are added to the Chroma database.
* @param docs An array of `Document` instances.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
* @returns A promise that resolves with a new `Chroma` instance.
*/
static async fromDocuments(docs, embeddings, dbConfig) {
const instance = new this(embeddings, dbConfig);
await instance.addDocuments(docs);
return instance;
}
/**
* Creates a new `Chroma` instance from an existing collection in the
* Chroma database.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
* @returns A promise that resolves with a new `Chroma` instance.
*/
static async fromExistingCollection(embeddings, dbConfig) {
const instance = new this(embeddings, dbConfig);
await instance.ensureCollection();
return instance;
}
/** @ignore */
static async imports() {
try {
const { ChromaClient } = await import("chromadb");
return { ChromaClient };
}
catch (e) {
throw new Error("Please install chromadb as a dependency with, e.g. `npm install -S chromadb`");
}
}
}
/**
* Generates a unique collection name if none is provided.
*/
function ensureCollectionName(collectionName) {
if (!collectionName) {
return `langchain-${uuid.v4()}`;
}
return collectionName;
}