"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); __setModuleDefault(result, mod); return result; }; Object.defineProperty(exports, "__esModule", { value: true }); exports.FaissStore = void 0; const uuid = __importStar(require("uuid")); const vectorstores_1 = require("@langchain/core/vectorstores"); const documents_1 = require("@langchain/core/documents"); const in_memory_js_1 = require("../stores/doc/in_memory.cjs"); /** * A class that wraps the FAISS (Facebook AI Similarity Search) vector * database for efficient similarity search and clustering of dense * vectors. */ class FaissStore extends vectorstores_1.SaveableVectorStore { _vectorstoreType() { return "faiss"; } getMapping() { return this._mapping; } getDocstore() { return this.docstore; } constructor(embeddings, args) { super(embeddings, args); Object.defineProperty(this, "_index", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "_mapping", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "docstore", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "args", { enumerable: true, configurable: true, writable: true, value: void 0 }); this.args = args; this._index = args.index; this._mapping = args.mapping ?? {}; this.embeddings = embeddings; this.docstore = args?.docstore ?? new in_memory_js_1.SynchronousInMemoryDocstore(); } /** * Adds an array of Document objects to the store. * @param documents An array of Document objects. * @returns A Promise that resolves when the documents have been added. */ async addDocuments(documents, options) { const texts = documents.map(({ pageContent }) => pageContent); return this.addVectors(await this.embeddings.embedDocuments(texts), documents, options); } get index() { if (!this._index) { throw new Error("Vector store not initialised yet. Try calling `fromTexts`, `fromDocuments` or `fromIndex` first."); } return this._index; } set index(index) { this._index = index; } /** * Adds an array of vectors and their corresponding Document objects to * the store. * @param vectors An array of vectors. * @param documents An array of Document objects corresponding to the vectors. * @returns A Promise that resolves with an array of document IDs when the vectors and documents have been added. */ async addVectors(vectors, documents, options) { if (vectors.length === 0) { return []; } if (vectors.length !== documents.length) { throw new Error(`Vectors and documents must have the same length`); } const dv = vectors[0].length; if (!this._index) { const { IndexFlatL2 } = await FaissStore.importFaiss(); this._index = new IndexFlatL2(dv); } const d = this.index.getDimension(); if (dv !== d) { throw new Error(`Vectors must have the same length as the number of dimensions (${d})`); } const docstoreSize = this.index.ntotal(); const documentIds = options?.ids ?? documents.map(() => uuid.v4()); for (let i = 0; i < vectors.length; i += 1) { const documentId = documentIds[i]; const id = docstoreSize + i; this.index.add(vectors[i]); this._mapping[id] = documentId; this.docstore.add({ [documentId]: documents[i] }); } return documentIds; } /** * Performs a similarity search in the vector store using a query vector * and returns the top k results along with their scores. * @param query A query vector. * @param k The number of top results to return. * @returns A Promise that resolves with an array of tuples, each containing a Document and its corresponding score. */ async similaritySearchVectorWithScore(query, k) { const d = this.index.getDimension(); if (query.length !== d) { throw new Error(`Query vector must have the same length as the number of dimensions (${d})`); } if (k > this.index.ntotal()) { const total = this.index.ntotal(); console.warn(`k (${k}) is greater than the number of elements in the index (${total}), setting k to ${total}`); // eslint-disable-next-line no-param-reassign k = total; } const result = this.index.search(query, k); return result.labels.map((id, index) => { const uuid = this._mapping[id]; return [this.docstore.search(uuid), result.distances[index]]; }); } /** * Saves the current state of the FaissStore to a specified directory. * @param directory The directory to save the state to. * @returns A Promise that resolves when the state has been saved. */ async save(directory) { const fs = await import("node:fs/promises"); const path = await import("node:path"); await fs.mkdir(directory, { recursive: true }); await Promise.all([ this.index.write(path.join(directory, "faiss.index")), await fs.writeFile(path.join(directory, "docstore.json"), JSON.stringify([ Array.from(this.docstore._docs.entries()), this._mapping, ])), ]); } /** * Method to delete documents. * @param params Object containing the IDs of the documents to delete. * @returns A promise that resolves when the deletion is complete. */ async delete(params) { const documentIds = params.ids; if (documentIds == null) { throw new Error("No documentIds provided to delete."); } const mappings = new Map(Object.entries(this._mapping).map(([key, value]) => [ parseInt(key, 10), value, ])); const reversedMappings = new Map(Array.from(mappings, (entry) => [entry[1], entry[0]])); const missingIds = new Set(documentIds.filter((id) => !reversedMappings.has(id))); if (missingIds.size > 0) { throw new Error(`Some specified documentIds do not exist in the current store. DocumentIds not found: ${Array.from(missingIds).join(", ")}`); } // eslint-disable-next-line @typescript-eslint/no-non-null-assertion const indexIdToDelete = documentIds.map((id) => reversedMappings.get(id)); // remove from index this.index.removeIds(indexIdToDelete); // remove from docstore documentIds.forEach((id) => { this.docstore._docs.delete(id); }); // remove from mappings indexIdToDelete.forEach((id) => { mappings.delete(id); }); this._mapping = { ...Array.from(mappings.values()) }; } /** * Merges the current FaissStore with another FaissStore. * @param targetIndex The FaissStore to merge with. * @returns A Promise that resolves with an array of document IDs when the merge is complete. */ async mergeFrom(targetIndex) { const targetIndexDimensions = targetIndex.index.getDimension(); if (!this._index) { const { IndexFlatL2 } = await FaissStore.importFaiss(); this._index = new IndexFlatL2(targetIndexDimensions); } const d = this.index.getDimension(); if (targetIndexDimensions !== d) { throw new Error("Cannot merge indexes with different dimensions."); } const targetMapping = targetIndex.getMapping(); const targetDocstore = targetIndex.getDocstore(); const targetSize = targetIndex.index.ntotal(); const documentIds = []; const currentDocstoreSize = this.index.ntotal(); for (let i = 0; i < targetSize; i += 1) { const targetId = targetMapping[i]; documentIds.push(targetId); const targetDocument = targetDocstore.search(targetId); const id = currentDocstoreSize + i; this._mapping[id] = targetId; this.docstore.add({ [targetId]: targetDocument }); } this.index.mergeFrom(targetIndex.index); return documentIds; } /** * Loads a FaissStore from a specified directory. * @param directory The directory to load the FaissStore from. * @param embeddings An Embeddings object. * @returns A Promise that resolves with a new FaissStore instance. */ static async load(directory, embeddings) { const fs = await import("node:fs/promises"); const path = await import("node:path"); const readStore = (directory) => fs .readFile(path.join(directory, "docstore.json"), "utf8") .then(JSON.parse); const readIndex = async (directory) => { const { IndexFlatL2 } = await this.importFaiss(); return IndexFlatL2.read(path.join(directory, "faiss.index")); }; const [[docstoreFiles, mapping], index] = await Promise.all([ readStore(directory), readIndex(directory), ]); const docstore = new in_memory_js_1.SynchronousInMemoryDocstore(new Map(docstoreFiles)); return new this(embeddings, { docstore, index, mapping }); } static async loadFromPython(directory, embeddings) { const fs = await import("node:fs/promises"); const path = await import("node:path"); const { Parser, NameRegistry } = await this.importPickleparser(); class PyDocument extends Map { toDocument() { return new documents_1.Document({ pageContent: this.get("page_content"), metadata: this.get("metadata"), }); } } class PyInMemoryDocstore { constructor() { Object.defineProperty(this, "_dict", { enumerable: true, configurable: true, writable: true, value: void 0 }); } toInMemoryDocstore() { const s = new in_memory_js_1.SynchronousInMemoryDocstore(); for (const [key, value] of Object.entries(this._dict)) { s._docs.set(key, value.toDocument()); } return s; } } const readStore = async (directory) => { const pkl = await fs.readFile(path.join(directory, "index.pkl"), "binary"); const buffer = Buffer.from(pkl, "binary"); const registry = new NameRegistry() .register("langchain.docstore.in_memory", "InMemoryDocstore", PyInMemoryDocstore) .register("langchain_community.docstore.in_memory", "InMemoryDocstore", PyInMemoryDocstore) .register("langchain.schema", "Document", PyDocument) .register("langchain.docstore.document", "Document", PyDocument) .register("langchain.schema.document", "Document", PyDocument) .register("langchain_core.documents.base", "Document", PyDocument) .register("pathlib", "WindowsPath", (...args) => args.join("\\")) .register("pathlib", "PosixPath", (...args) => args.join("/")); const pickleparser = new Parser({ nameResolver: registry, }); const [rawStore, mapping] = pickleparser.parse(buffer); const store = rawStore.toInMemoryDocstore(); return { store, mapping }; }; const readIndex = async (directory) => { const { IndexFlatL2 } = await this.importFaiss(); return IndexFlatL2.read(path.join(directory, "index.faiss")); }; const [store, index] = await Promise.all([ readStore(directory), readIndex(directory), ]); return new this(embeddings, { docstore: store.store, index, mapping: store.mapping, }); } /** * Creates a new FaissStore from an array of texts, their corresponding * metadata, and an Embeddings object. * @param texts An array of texts. * @param metadatas An array of metadata corresponding to the texts, or a single metadata object to be used for all texts. * @param embeddings An Embeddings object. * @param dbConfig An optional configuration object for the document store. * @returns A Promise that resolves with a new FaissStore instance. */ static async fromTexts(texts, metadatas, embeddings, dbConfig) { const docs = []; for (let i = 0; i < texts.length; i += 1) { const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas; const newDoc = new documents_1.Document({ pageContent: texts[i], metadata, }); docs.push(newDoc); } return this.fromDocuments(docs, embeddings, dbConfig); } /** * Creates a new FaissStore from an array of Document objects and an * Embeddings object. * @param docs An array of Document objects. * @param embeddings An Embeddings object. * @param dbConfig An optional configuration object for the document store. * @returns A Promise that resolves with a new FaissStore instance. */ static async fromDocuments(docs, embeddings, dbConfig) { const args = { docstore: dbConfig?.docstore, }; const instance = new this(embeddings, args); await instance.addDocuments(docs); return instance; } /** * Creates a new FaissStore from an existing FaissStore and an Embeddings * object. * @param targetIndex An existing FaissStore. * @param embeddings An Embeddings object. * @param dbConfig An optional configuration object for the document store. * @returns A Promise that resolves with a new FaissStore instance. */ static async fromIndex(targetIndex, embeddings, dbConfig) { const args = { docstore: dbConfig?.docstore, }; const instance = new this(embeddings, args); await instance.mergeFrom(targetIndex); return instance; } static async importFaiss() { try { const { default: { IndexFlatL2 }, } = await import("faiss-node"); return { IndexFlatL2 }; // eslint-disable-next-line @typescript-eslint/no-explicit-any } catch (err) { throw new Error(`Could not import faiss-node. Please install faiss-node as a dependency with, e.g. \`npm install -S faiss-node\`.\n\nError: ${err?.message}`); } } static async importPickleparser() { try { const { default: { Parser, NameRegistry }, } = await import("pickleparser"); return { Parser, NameRegistry }; // eslint-disable-next-line @typescript-eslint/no-explicit-any } catch (err) { throw new Error(`Could not import pickleparser. Please install pickleparser as a dependency with, e.g. \`npm install -S pickleparser\`.\n\nError: ${err?.message}`); } } } exports.FaissStore = FaissStore;