import type { SupabaseClient } from "@supabase/supabase-js"; import type { PostgrestFilterBuilder } from "@supabase/postgrest-js"; import { MaxMarginalRelevanceSearchOptions, VectorStore } from "@langchain/core/vectorstores"; import type { EmbeddingsInterface } from "@langchain/core/embeddings"; import { Document } from "@langchain/core/documents"; export type SupabaseMetadata = Record; export type SupabaseFilter = PostgrestFilterBuilder; export type SupabaseFilterRPCCall = (rpcCall: SupabaseFilter) => SupabaseFilter; /** * Interface for the response returned when searching embeddings. */ interface SearchEmbeddingsResponse { id: number; content: string; metadata: object; embedding: number[]; similarity: number; } /** * Interface for the arguments required to initialize a Supabase library. */ export interface SupabaseLibArgs { client: SupabaseClient; tableName?: string; queryName?: string; filter?: SupabaseMetadata | SupabaseFilterRPCCall; upsertBatchSize?: number; } /** * Supabase vector store integration. * * Setup: * Install `@langchain/community` and `@supabase/supabase-js`. * * ```bash * npm install @langchain/community @supabase/supabase-js * ``` * * See https://js.langchain.com/docs/integrations/vectorstores/supabase for * instructions on how to set up your Supabase instance. * * ## [Constructor args](https://api.js.langchain.com/classes/_langchain_community.vectorstores_supabase.SupabaseVectorStore.html#constructor) * *
* Instantiate * * ```typescript * import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase"; * import { OpenAIEmbeddings } from "@langchain/openai"; * * import { createClient } from "@supabase/supabase-js"; * * const embeddings = new OpenAIEmbeddings({ * model: "text-embedding-3-small", * }); * * const supabaseClient = createClient( * process.env.SUPABASE_URL, * process.env.SUPABASE_PRIVATE_KEY * ); * * const vectorStore = new SupabaseVectorStore(embeddings, { * client: supabaseClient, * tableName: "documents", * queryName: "match_documents", * }); * ``` *
* *
* *
* Add documents * * ```typescript * import type { Document } from '@langchain/core/documents'; * * const document1 = { pageContent: "foo", metadata: { baz: "bar" } }; * const document2 = { pageContent: "thud", metadata: { bar: "baz" } }; * const document3 = { pageContent: "i will be deleted :(", metadata: {} }; * * const documents: Document[] = [document1, document2, document3]; * const ids = ["1", "2", "3"]; * await vectorStore.addDocuments(documents, { ids }); * ``` *
* *
* *
* Delete documents * * ```typescript * await vectorStore.delete({ ids: ["3"] }); * ``` *
* *
* *
* Similarity search * * ```typescript * const results = await vectorStore.similaritySearch("thud", 1); * for (const doc of results) { * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`); * } * // Output: * thud [{"baz":"bar"}] * ``` *
* *
* * *
* Similarity search with filter * * ```typescript * const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" }); * * for (const doc of resultsWithFilter) { * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`); * } * // Output: * foo [{"baz":"bar"}] * ``` *
* *
* * *
* Similarity search with score * * ```typescript * const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1); * for (const [doc, score] of resultsWithScore) { * console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`); * } * // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}] * ``` *
* *
* *
* As a retriever * * ```typescript * const retriever = vectorStore.asRetriever({ * searchType: "mmr", // Leave blank for standard similarity search * k: 1, * }); * const resultAsRetriever = await retriever.invoke("thud"); * console.log(resultAsRetriever); * * // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })] * ``` *
* *
*/ export declare class SupabaseVectorStore extends VectorStore { FilterType: SupabaseMetadata | SupabaseFilterRPCCall; client: SupabaseClient; tableName: string; queryName: string; filter?: SupabaseMetadata | SupabaseFilterRPCCall; upsertBatchSize: number; _vectorstoreType(): string; constructor(embeddings: EmbeddingsInterface, args: SupabaseLibArgs); /** * Adds documents to the vector store. * @param documents The documents to add. * @param options Optional parameters for adding the documents. * @returns A promise that resolves when the documents have been added. */ addDocuments(documents: Document[], options?: { ids?: string[] | number[]; }): Promise; /** * Adds vectors to the vector store. * @param vectors The vectors to add. * @param documents The documents associated with the vectors. * @param options Optional parameters for adding the vectors. * @returns A promise that resolves with the IDs of the added vectors when the vectors have been added. */ addVectors(vectors: number[][], documents: Document[], options?: { ids?: string[] | number[]; }): Promise; /** * Deletes vectors from the vector store. * @param params The parameters for deleting vectors. * @returns A promise that resolves when the vectors have been deleted. */ delete(params: { ids: string[] | number[]; }): Promise; protected _searchSupabase(query: number[], k: number, filter?: this["FilterType"]): Promise; /** * Performs a similarity search on the vector store. * @param query The query vector. * @param k The number of results to return. * @param filter Optional filter to apply to the search. * @returns A promise that resolves with the search results when the search is complete. */ similaritySearchVectorWithScore(query: number[], k: number, filter?: this["FilterType"]): Promise<[Document, number][]>; /** * Return documents selected using the maximal marginal relevance. * Maximal marginal relevance optimizes for similarity to the query AND diversity * among selected documents. * * @param {string} query - Text to look up documents similar to. * @param {number} options.k - Number of documents to return. * @param {number} options.fetchK=20- Number of documents to fetch before passing to the MMR algorithm. * @param {number} options.lambda=0.5 - Number between 0 and 1 that determines the degree of diversity among the results, * where 0 corresponds to maximum diversity and 1 to minimum diversity. * @param {SupabaseLibArgs} options.filter - Optional filter to apply to the search. * * @returns {Promise} - List of documents selected by maximal marginal relevance. */ maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions): Promise; /** * Creates a new SupabaseVectorStore instance from an array of texts. * @param texts The texts to create documents from. * @param metadatas The metadata for the documents. * @param embeddings The embeddings to use. * @param dbConfig The configuration for the Supabase database. * @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created. */ static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: SupabaseLibArgs): Promise; /** * Creates a new SupabaseVectorStore instance from an array of documents. * @param docs The documents to create the instance from. * @param embeddings The embeddings to use. * @param dbConfig The configuration for the Supabase database. * @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created. */ static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: SupabaseLibArgs): Promise; /** * Creates a new SupabaseVectorStore instance from an existing index. * @param embeddings The embeddings to use. * @param dbConfig The configuration for the Supabase database. * @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created. */ static fromExistingIndex(embeddings: EmbeddingsInterface, dbConfig: SupabaseLibArgs): Promise; } export {};