import * as uuid from "uuid"; import { VectorStore } from "@langchain/core/vectorstores"; import { Document } from "@langchain/core/documents"; /** * Class for managing and operating vector search applications with * Tigris, an open-source Serverless NoSQL Database and Search Platform. */ export class TigrisVectorStore extends VectorStore { _vectorstoreType() { return "tigris"; } constructor(embeddings, args) { super(embeddings, args); // eslint-disable-next-line @typescript-eslint/no-explicit-any Object.defineProperty(this, "index", { enumerable: true, configurable: true, writable: true, value: void 0 }); this.embeddings = embeddings; this.index = args.index; } /** * Method to add an array of documents to the Tigris database. * @param documents An array of Document instances to be added to the Tigris database. * @param options Optional parameter that can either be an array of string IDs or an object with a property 'ids' that is an array of string IDs. * @returns A Promise that resolves when the documents have been added to the Tigris database. */ async addDocuments(documents, options) { const texts = documents.map(({ pageContent }) => pageContent); await this.addVectors(await this.embeddings.embedDocuments(texts), documents, options); } /** * Method to add vectors to the Tigris database. * @param vectors An array of vectors to be added to the Tigris database. * @param documents An array of Document instances corresponding to the vectors. * @param options Optional parameter that can either be an array of string IDs or an object with a property 'ids' that is an array of string IDs. * @returns A Promise that resolves when the vectors have been added to the Tigris database. */ async addVectors(vectors, documents, options) { if (vectors.length === 0) { return; } if (vectors.length !== documents.length) { throw new Error(`Vectors and metadatas must have the same length`); } const ids = Array.isArray(options) ? options : options?.ids; const documentIds = ids == null ? documents.map(() => uuid.v4()) : ids; await this.index?.addDocumentsWithVectors({ ids: documentIds, embeddings: vectors, documents: documents.map(({ metadata, pageContent }) => ({ content: pageContent, metadata, })), }); } /** * Method to perform a similarity search in the Tigris database and return * the k most similar vectors along with their similarity scores. * @param query The query vector. * @param k The number of most similar vectors to return. * @param filter Optional filter object to apply during the search. * @returns A Promise that resolves to an array of tuples, each containing a Document and its similarity score. */ async similaritySearchVectorWithScore(query, k, filter) { const result = await this.index?.similaritySearchVectorWithScore({ query, k, filter, }); if (!result) { return []; } // eslint-disable-next-line @typescript-eslint/no-explicit-any return result.map(([document, score]) => [ new Document({ pageContent: document.content, metadata: document.metadata, }), score, ]); } /** * Static method to create a new instance of TigrisVectorStore from an * array of texts. * @param texts An array of texts to be converted into Document instances and added to the Tigris database. * @param metadatas Either an array of metadata objects or a single metadata object to be associated with the texts. * @param embeddings An instance of Embeddings to be used for embedding the texts. * @param dbConfig An instance of TigrisLibArgs to be used for configuring the Tigris database. * @returns A Promise that resolves to a new instance of TigrisVectorStore. */ static async fromTexts(texts, metadatas, embeddings, dbConfig) { const docs = []; for (let i = 0; i < texts.length; i += 1) { const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas; const newDoc = new Document({ pageContent: texts[i], metadata, }); docs.push(newDoc); } return TigrisVectorStore.fromDocuments(docs, embeddings, dbConfig); } /** * Static method to create a new instance of TigrisVectorStore from an * array of Document instances. * @param docs An array of Document instances to be added to the Tigris database. * @param embeddings An instance of Embeddings to be used for embedding the documents. * @param dbConfig An instance of TigrisLibArgs to be used for configuring the Tigris database. * @returns A Promise that resolves to a new instance of TigrisVectorStore. */ static async fromDocuments(docs, embeddings, dbConfig) { const instance = new this(embeddings, dbConfig); await instance.addDocuments(docs); return instance; } /** * Static method to create a new instance of TigrisVectorStore from an * existing index. * @param embeddings An instance of Embeddings to be used for embedding the documents. * @param dbConfig An instance of TigrisLibArgs to be used for configuring the Tigris database. * @returns A Promise that resolves to a new instance of TigrisVectorStore. */ static async fromExistingIndex(embeddings, dbConfig) { const instance = new this(embeddings, dbConfig); return instance; } }