import { type ClientOptions, OpenAI as OpenAIClient } from "openai"; import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager"; import { AIMessageChunk, type BaseMessage } from "@langchain/core/messages"; import { ChatGenerationChunk, type ChatResult } from "@langchain/core/outputs"; import { BaseChatModel, BindToolsInput, LangSmithParams, type BaseChatModelParams } from "@langchain/core/language_models/chat_models"; import { type BaseFunctionCallOptions, type BaseLanguageModelInput, type StructuredOutputMethodOptions, type StructuredOutputMethodParams } from "@langchain/core/language_models/base"; import { z } from "zod"; import { Runnable } from "@langchain/core/runnables"; import type { AzureOpenAIInput, OpenAICallOptions, OpenAIChatInput, OpenAICoreRequestOptions, LegacyOpenAIInput, ChatOpenAIResponseFormat } from "./types.js"; import { OpenAIToolChoice } from "./utils/openai.js"; export type { AzureOpenAIInput, OpenAICallOptions, OpenAIChatInput }; interface TokenUsage { completionTokens?: number; promptTokens?: number; totalTokens?: number; } interface OpenAILLMOutput { tokenUsage: TokenUsage; } type OpenAIRoleEnum = "system" | "assistant" | "user" | "function" | "tool"; export declare function messageToOpenAIRole(message: BaseMessage): OpenAIRoleEnum; export declare function _convertMessagesToOpenAIParams(messages: BaseMessage[]): OpenAIClient.Chat.Completions.ChatCompletionMessageParam[]; type ChatOpenAIToolType = BindToolsInput | OpenAIClient.ChatCompletionTool; export interface ChatOpenAIStructuredOutputMethodOptions extends StructuredOutputMethodOptions { /** * strict: If `true` and `method` = "function_calling", model output is * guaranteed to exactly match the schema. If `true`, the input schema * will also be validated according to * https://platform.openai.com/docs/guides/structured-outputs/supported-schemas. * If `false`, input schema will not be validated and model output will not * be validated. * If `undefined`, `strict` argument will not be passed to the model. * * @version 0.2.6 * @note Planned breaking change in version `0.3.0`: * `strict` will default to `true` when `method` is * "function_calling" as of version `0.3.0`. */ strict?: boolean; } export interface ChatOpenAICallOptions extends OpenAICallOptions, BaseFunctionCallOptions { tools?: ChatOpenAIToolType[]; tool_choice?: OpenAIToolChoice; promptIndex?: number; response_format?: ChatOpenAIResponseFormat; seed?: number; /** * Additional options to pass to streamed completions. * If provided takes precedence over "streamUsage" set at initialization time. */ stream_options?: { /** * Whether or not to include token usage in the stream. * If set to `true`, this will include an additional * chunk at the end of the stream with the token usage. */ include_usage: boolean; }; /** * Whether or not to restrict the ability to * call multiple tools in one response. */ parallel_tool_calls?: boolean; /** * If `true`, model output is guaranteed to exactly match the JSON Schema * provided in the tool definition. If `true`, the input schema will also be * validated according to * https://platform.openai.com/docs/guides/structured-outputs/supported-schemas. * * If `false`, input schema will not be validated and model output will not * be validated. * * If `undefined`, `strict` argument will not be passed to the model. * * @version 0.2.6 */ strict?: boolean; } export interface ChatOpenAIFields extends Partial, Partial, BaseChatModelParams { configuration?: ClientOptions & LegacyOpenAIInput; } /** * OpenAI chat model integration. * * Setup: * Install `@langchain/openai` and set an environment variable named `OPENAI_API_KEY`. * * ```bash * npm install @langchain/openai * export OPENAI_API_KEY="your-api-key" * ``` * * ## [Constructor args](https://api.js.langchain.com/classes/langchain_openai.ChatOpenAI.html#constructor) * * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_openai.ChatOpenAICallOptions.html) * * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc. * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below: * * ```typescript * // When calling `.bind`, call options should be passed via the first argument * const llmWithArgsBound = llm.bind({ * stop: ["\n"], * tools: [...], * }); * * // When calling `.bindTools`, call options should be passed via the second argument * const llmWithTools = llm.bindTools( * [...], * { * tool_choice: "auto", * } * ); * ``` * * ## Examples * *
* Instantiate * * ```typescript * import { ChatOpenAI } from '@langchain/openai'; * * const llm = new ChatOpenAI({ * model: "gpt-4o", * temperature: 0, * maxTokens: undefined, * timeout: undefined, * maxRetries: 2, * // apiKey: "...", * // baseUrl: "...", * // organization: "...", * // other params... * }); * ``` *
* *
* *
* Invoking * * ```typescript * const input = `Translate "I love programming" into French.`; * * // Models also accept a list of chat messages or a formatted prompt * const result = await llm.invoke(input); * console.log(result); * ``` * * ```txt * AIMessage { * "id": "chatcmpl-9u4Mpu44CbPjwYFkTbeoZgvzB00Tz", * "content": "J'adore la programmation.", * "response_metadata": { * "tokenUsage": { * "completionTokens": 5, * "promptTokens": 28, * "totalTokens": 33 * }, * "finish_reason": "stop", * "system_fingerprint": "fp_3aa7262c27" * }, * "usage_metadata": { * "input_tokens": 28, * "output_tokens": 5, * "total_tokens": 33 * } * } * ``` *
* *
* *
* Streaming Chunks * * ```typescript * for await (const chunk of await llm.stream(input)) { * console.log(chunk); * } * ``` * * ```txt * AIMessageChunk { * "id": "chatcmpl-9u4NWB7yUeHCKdLr6jP3HpaOYHTqs", * "content": "" * } * AIMessageChunk { * "content": "J" * } * AIMessageChunk { * "content": "'adore" * } * AIMessageChunk { * "content": " la" * } * AIMessageChunk { * "content": " programmation",, * } * AIMessageChunk { * "content": ".",, * } * AIMessageChunk { * "content": "", * "response_metadata": { * "finish_reason": "stop", * "system_fingerprint": "fp_c9aa9c0491" * }, * } * AIMessageChunk { * "content": "", * "usage_metadata": { * "input_tokens": 28, * "output_tokens": 5, * "total_tokens": 33 * } * } * ``` *
* *
* *
* Aggregate Streamed Chunks * * ```typescript * import { AIMessageChunk } from '@langchain/core/messages'; * import { concat } from '@langchain/core/utils/stream'; * * const stream = await llm.stream(input); * let full: AIMessageChunk | undefined; * for await (const chunk of stream) { * full = !full ? chunk : concat(full, chunk); * } * console.log(full); * ``` * * ```txt * AIMessageChunk { * "id": "chatcmpl-9u4PnX6Fy7OmK46DASy0bH6cxn5Xu", * "content": "J'adore la programmation.", * "response_metadata": { * "prompt": 0, * "completion": 0, * "finish_reason": "stop", * }, * "usage_metadata": { * "input_tokens": 28, * "output_tokens": 5, * "total_tokens": 33 * } * } * ``` *
* *
* *
* Bind tools * * ```typescript * import { z } from 'zod'; * * const GetWeather = { * name: "GetWeather", * description: "Get the current weather in a given location", * schema: z.object({ * location: z.string().describe("The city and state, e.g. San Francisco, CA") * }), * } * * const GetPopulation = { * name: "GetPopulation", * description: "Get the current population in a given location", * schema: z.object({ * location: z.string().describe("The city and state, e.g. San Francisco, CA") * }), * } * * const llmWithTools = llm.bindTools( * [GetWeather, GetPopulation], * { * // strict: true // enforce tool args schema is respected * } * ); * const aiMsg = await llmWithTools.invoke( * "Which city is hotter today and which is bigger: LA or NY?" * ); * console.log(aiMsg.tool_calls); * ``` * * ```txt * [ * { * name: 'GetWeather', * args: { location: 'Los Angeles, CA' }, * type: 'tool_call', * id: 'call_uPU4FiFzoKAtMxfmPnfQL6UK' * }, * { * name: 'GetWeather', * args: { location: 'New York, NY' }, * type: 'tool_call', * id: 'call_UNkEwuQsHrGYqgDQuH9nPAtX' * }, * { * name: 'GetPopulation', * args: { location: 'Los Angeles, CA' }, * type: 'tool_call', * id: 'call_kL3OXxaq9OjIKqRTpvjaCH14' * }, * { * name: 'GetPopulation', * args: { location: 'New York, NY' }, * type: 'tool_call', * id: 'call_s9KQB1UWj45LLGaEnjz0179q' * } * ] * ``` *
* *
* *
* Structured Output * * ```typescript * import { z } from 'zod'; * * const Joke = z.object({ * setup: z.string().describe("The setup of the joke"), * punchline: z.string().describe("The punchline to the joke"), * rating: z.number().optional().describe("How funny the joke is, from 1 to 10") * }).describe('Joke to tell user.'); * * const structuredLlm = llm.withStructuredOutput(Joke, { * name: "Joke", * strict: true, // Optionally enable OpenAI structured outputs * }); * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats"); * console.log(jokeResult); * ``` * * ```txt * { * setup: 'Why was the cat sitting on the computer?', * punchline: 'Because it wanted to keep an eye on the mouse!', * rating: 7 * } * ``` *
* *
* *
* JSON Object Response Format * * ```typescript * const jsonLlm = llm.bind({ response_format: { type: "json_object" } }); * const jsonLlmAiMsg = await jsonLlm.invoke( * "Return a JSON object with key 'randomInts' and a value of 10 random ints in [0-99]" * ); * console.log(jsonLlmAiMsg.content); * ``` * * ```txt * { * "randomInts": [23, 87, 45, 12, 78, 34, 56, 90, 11, 67] * } * ``` *
* *
* *
* Multimodal * * ```typescript * import { HumanMessage } from '@langchain/core/messages'; * * const imageUrl = "https://example.com/image.jpg"; * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer()); * const base64Image = Buffer.from(imageData).toString('base64'); * * const message = new HumanMessage({ * content: [ * { type: "text", text: "describe the weather in this image" }, * { * type: "image_url", * image_url: { url: `data:image/jpeg;base64,${base64Image}` }, * }, * ] * }); * * const imageDescriptionAiMsg = await llm.invoke([message]); * console.log(imageDescriptionAiMsg.content); * ``` * * ```txt * The weather in the image appears to be clear and sunny. The sky is mostly blue with a few scattered white clouds, indicating fair weather. The bright sunlight is casting shadows on the green, grassy hill, suggesting it is a pleasant day with good visibility. There are no signs of rain or stormy conditions. * ``` *
* *
* *
* Usage Metadata * * ```typescript * const aiMsgForMetadata = await llm.invoke(input); * console.log(aiMsgForMetadata.usage_metadata); * ``` * * ```txt * { input_tokens: 28, output_tokens: 5, total_tokens: 33 } * ``` *
* *
* *
* Logprobs * * ```typescript * const logprobsLlm = new ChatOpenAI({ logprobs: true }); * const aiMsgForLogprobs = await logprobsLlm.invoke(input); * console.log(aiMsgForLogprobs.response_metadata.logprobs); * ``` * * ```txt * { * content: [ * { * token: 'J', * logprob: -0.000050616763, * bytes: [Array], * top_logprobs: [] * }, * { * token: "'", * logprob: -0.01868736, * bytes: [Array], * top_logprobs: [] * }, * { * token: 'ad', * logprob: -0.0000030545007, * bytes: [Array], * top_logprobs: [] * }, * { token: 'ore', logprob: 0, bytes: [Array], top_logprobs: [] }, * { * token: ' la', * logprob: -0.515404, * bytes: [Array], * top_logprobs: [] * }, * { * token: ' programm', * logprob: -0.0000118755715, * bytes: [Array], * top_logprobs: [] * }, * { token: 'ation', logprob: 0, bytes: [Array], top_logprobs: [] }, * { * token: '.', * logprob: -0.0000037697225, * bytes: [Array], * top_logprobs: [] * } * ], * refusal: null * } * ``` *
* *
* *
* Response Metadata * * ```typescript * const aiMsgForResponseMetadata = await llm.invoke(input); * console.log(aiMsgForResponseMetadata.response_metadata); * ``` * * ```txt * { * tokenUsage: { completionTokens: 5, promptTokens: 28, totalTokens: 33 }, * finish_reason: 'stop', * system_fingerprint: 'fp_3aa7262c27' * } * ``` *
* *
* *
* JSON Schema Structured Output * * ```typescript * const llmForJsonSchema = new ChatOpenAI({ * model: "gpt-4o-2024-08-06", * }).withStructuredOutput( * z.object({ * command: z.string().describe("The command to execute"), * expectedOutput: z.string().describe("The expected output of the command"), * options: z * .array(z.string()) * .describe("The options you can pass to the command"), * }), * { * method: "jsonSchema", * strict: true, // Optional when using the `jsonSchema` method * } * ); * * const jsonSchemaRes = await llmForJsonSchema.invoke( * "What is the command to list files in a directory?" * ); * console.log(jsonSchemaRes); * ``` * * ```txt * { * command: 'ls', * expectedOutput: 'A list of files and subdirectories within the specified directory.', * options: [ * '-a: include directory entries whose names begin with a dot (.).', * '-l: use a long listing format.', * '-h: with -l, print sizes in human readable format (e.g., 1K, 234M, 2G).', * '-t: sort by time, newest first.', * '-r: reverse order while sorting.', * '-S: sort by file size, largest first.', * '-R: list subdirectories recursively.' * ] * } * ``` *
* *
*/ export declare class ChatOpenAI extends BaseChatModel implements OpenAIChatInput, AzureOpenAIInput { static lc_name(): string; get callKeys(): string[]; lc_serializable: boolean; get lc_secrets(): { [key: string]: string; } | undefined; get lc_aliases(): Record; temperature: number; topP: number; frequencyPenalty: number; presencePenalty: number; n: number; logitBias?: Record; modelName: string; model: string; modelKwargs?: OpenAIChatInput["modelKwargs"]; stop?: string[]; stopSequences?: string[]; user?: string; timeout?: number; streaming: boolean; streamUsage: boolean; maxTokens?: number; logprobs?: boolean; topLogprobs?: number; openAIApiKey?: string; apiKey?: string; azureOpenAIApiVersion?: string; azureOpenAIApiKey?: string; azureADTokenProvider?: () => Promise; azureOpenAIApiInstanceName?: string; azureOpenAIApiDeploymentName?: string; azureOpenAIBasePath?: string; azureOpenAIEndpoint?: string; organization?: string; __includeRawResponse?: boolean; protected client: OpenAIClient; protected clientConfig: ClientOptions; /** * Whether the model supports the `strict` argument when passing in tools. * If `undefined` the `strict` argument will not be passed to OpenAI. */ supportsStrictToolCalling?: boolean; constructor(fields?: ChatOpenAIFields, /** @deprecated */ configuration?: ClientOptions & LegacyOpenAIInput); getLsParams(options: this["ParsedCallOptions"]): LangSmithParams; bindTools(tools: ChatOpenAIToolType[], kwargs?: Partial): Runnable; private createResponseFormat; /** * Get the parameters used to invoke the model */ invocationParams(options?: this["ParsedCallOptions"], extra?: { streaming?: boolean; }): Omit; /** @ignore */ _identifyingParams(): Omit & { model_name: string; } & ClientOptions; _streamResponseChunks(messages: BaseMessage[], options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): AsyncGenerator; /** * Get the identifying parameters for the model * */ identifyingParams(): Omit & { model_name: string; } & ClientOptions; /** @ignore */ _generate(messages: BaseMessage[], options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): Promise; /** * Estimate the number of tokens a prompt will use. * Modified from: https://github.com/hmarr/openai-chat-tokens/blob/main/src/index.ts */ private getEstimatedTokenCountFromPrompt; /** * Estimate the number of tokens an array of generations have used. */ private getNumTokensFromGenerations; getNumTokensFromMessages(messages: BaseMessage[]): Promise<{ totalCount: number; countPerMessage: number[]; }>; /** * Calls the OpenAI API with retry logic in case of failures. * @param request The request to send to the OpenAI API. * @param options Optional configuration for the API call. * @returns The response from the OpenAI API. */ completionWithRetry(request: OpenAIClient.Chat.ChatCompletionCreateParamsStreaming, options?: OpenAICoreRequestOptions): Promise>; completionWithRetry(request: OpenAIClient.Chat.ChatCompletionCreateParamsNonStreaming, options?: OpenAICoreRequestOptions): Promise; /** * Call the beta chat completions parse endpoint. This should only be called if * response_format is set to "json_object". * @param {OpenAIClient.Chat.ChatCompletionCreateParamsNonStreaming} request * @param {OpenAICoreRequestOptions | undefined} options */ betaParsedCompletionWithRetry(request: OpenAIClient.Chat.ChatCompletionCreateParamsNonStreaming, options?: OpenAICoreRequestOptions): Promise>; protected _getClientOptions(options: OpenAICoreRequestOptions | undefined): OpenAICoreRequestOptions; _llmType(): string; /** @ignore */ _combineLLMOutput(...llmOutputs: OpenAILLMOutput[]): OpenAILLMOutput; withStructuredOutput = Record>(outputSchema: StructuredOutputMethodParams | z.ZodType | Record, config?: ChatOpenAIStructuredOutputMethodOptions): Runnable; withStructuredOutput = Record>(outputSchema: StructuredOutputMethodParams | z.ZodType | Record, config?: ChatOpenAIStructuredOutputMethodOptions): Runnable; }