import { LlamaModel, LlamaContext, LlamaChatSession, LlamaJsonSchemaGrammar, LlamaGrammar, GbnfJsonSchema } from "node-llama-cpp"; /** * Note that the modelPath is the only required parameter. For testing you * can set this in the environment variable `LLAMA_PATH`. */ export interface LlamaBaseCppInputs { /** Prompt processing batch size. */ batchSize?: number; /** Text context size. */ contextSize?: number; /** Embedding mode only. */ embedding?: boolean; /** Use fp16 for KV cache. */ f16Kv?: boolean; /** Number of layers to store in VRAM. */ gpuLayers?: number; /** The llama_eval() call computes all logits, not just the last one. */ logitsAll?: boolean; /** */ maxTokens?: number; /** Path to the model on the filesystem. */ modelPath: string; /** Add the begining of sentence token. */ prependBos?: boolean; /** If null, a random seed will be used. */ seed?: null | number; /** The randomness of the responses, e.g. 0.1 deterministic, 1.5 creative, 0.8 balanced, 0 disables. */ temperature?: number; /** Number of threads to use to evaluate tokens. */ threads?: number; /** Trim whitespace from the end of the generated text Disabled by default. */ trimWhitespaceSuffix?: boolean; /** Consider the n most likely tokens, where n is 1 to vocabulary size, 0 disables (uses full vocabulary). Note: only applies when `temperature` > 0. */ topK?: number; /** Selects the smallest token set whose probability exceeds P, where P is between 0 - 1, 1 disables. Note: only applies when `temperature` > 0. */ topP?: number; /** Force system to keep model in RAM. */ useMlock?: boolean; /** Use mmap if possible. */ useMmap?: boolean; /** Only load the vocabulary, no weights. */ vocabOnly?: boolean; /** JSON schema to be used to format output. Also known as `grammar`. */ jsonSchema?: object; /** GBNF string to be used to format output. Also known as `grammar`. */ gbnf?: string; } export declare function createLlamaModel(inputs: LlamaBaseCppInputs): LlamaModel; export declare function createLlamaContext(model: LlamaModel, inputs: LlamaBaseCppInputs): LlamaContext; export declare function createLlamaSession(context: LlamaContext): LlamaChatSession; export declare function createLlamaJsonSchemaGrammar(schemaString: object | undefined): LlamaJsonSchemaGrammar | undefined; export declare function createCustomGrammar(filePath: string | undefined): LlamaGrammar | undefined;