import { Redis } from "ioredis"; import { BaseCache } from "@langchain/core/caches"; import { Generation } from "@langchain/core/outputs"; /** * Cache LLM results using Redis. * @example * ```typescript * const model = new ChatOpenAI({ * cache: new RedisCache(new Redis(), { ttl: 60 }), * }); * * // Invoke the model with a prompt * const response = await model.invoke("Do something random!"); * console.log(response); * * // Remember to disconnect the Redis client when done * await redisClient.disconnect(); * ``` */ export declare class RedisCache extends BaseCache { protected redisClient: Redis; protected ttl?: number; constructor(redisClient: Redis, config?: { ttl?: number; }); /** * Retrieves data from the Redis server using a prompt and an LLM key. If * the data is not found, it returns null. * @param prompt The prompt used to find the data. * @param llmKey The LLM key used to find the data. * @returns The corresponding data as an array of Generation objects, or null if not found. */ lookup(prompt: string, llmKey: string): Promise; /** * Updates the data in the Redis server using a prompt and an LLM key. * @param prompt The prompt used to store the data. * @param llmKey The LLM key used to store the data. * @param value The data to be stored, represented as an array of Generation objects. */ update(prompt: string, llmKey: string, value: Generation[]): Promise; }