import { renderTemplate } from "@langchain/core/prompts"; import { OutputParserException } from "@langchain/core/output_parsers"; import { AgentActionOutputParser } from "../types.js"; import { FORMAT_INSTRUCTIONS } from "./prompt.js"; const FINAL_ANSWER_ACTION = "Final Answer:"; const FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "Parsing LLM output produced both a final answer and a parse-able action:"; /** * Parses ReAct-style LLM calls that have a single tool input. * * Expects output to be in one of two formats. * * If the output signals that an action should be taken, * should be in the below format. This will result in an AgentAction * being returned. * * ``` * Thought: agent thought here * Action: search * Action Input: what is the temperature in SF? * ``` * * If the output signals that a final answer should be given, * should be in the below format. This will result in an AgentFinish * being returned. * * ``` * Thought: agent thought here * Final Answer: The temperature is 100 degrees * ``` * @example * ```typescript * * const runnableAgent = RunnableSequence.from([ * ...rest of runnable * new ReActSingleInputOutputParser({ toolNames: ["SerpAPI", "Calculator"] }), * ]); * const agent = AgentExecutor.fromAgentAndTools({ * agent: runnableAgent, * tools: [new SerpAPI(), new Calculator()], * }); * const result = await agent.invoke({ * input: "whats the weather in pomfret?", * }); * ``` */ export class ReActSingleInputOutputParser extends AgentActionOutputParser { constructor(fields) { super(...arguments); Object.defineProperty(this, "lc_namespace", { enumerable: true, configurable: true, writable: true, value: ["langchain", "agents", "react"] }); Object.defineProperty(this, "toolNames", { enumerable: true, configurable: true, writable: true, value: void 0 }); this.toolNames = fields.toolNames; } /** * Parses the given text into an AgentAction or AgentFinish object. If an * output fixing parser is defined, uses it to parse the text. * @param text Text to parse. * @returns Promise that resolves to an AgentAction or AgentFinish object. */ async parse(text) { const includesAnswer = text.includes(FINAL_ANSWER_ACTION); const regex = /Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)/; const actionMatch = text.match(regex); if (actionMatch) { if (includesAnswer) { throw new OutputParserException(`${FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: ${text}`); } const action = actionMatch[1]; const actionInput = actionMatch[2]; const toolInput = actionInput.trim().replace(/"/g, ""); return { tool: action, toolInput, log: text, }; } if (includesAnswer) { const finalAnswerText = text.split(FINAL_ANSWER_ACTION)[1].trim(); return { returnValues: { output: finalAnswerText, }, log: text, }; } throw new OutputParserException(`Could not parse LLM output: ${text}`); } /** * Returns the format instructions as a string. If the 'raw' option is * true, returns the raw FORMAT_INSTRUCTIONS. * @param options Options for getting the format instructions. * @returns Format instructions as a string. */ getFormatInstructions() { return renderTemplate(FORMAT_INSTRUCTIONS, "f-string", { tool_names: this.toolNames.join(", "), }); } }