import { zodToJsonSchema } from "zod-to-json-schema"; import { JsonOutputFunctionsParser } from "../../output_parsers/openai_functions.js"; /** * Creates a runnable sequence that calls OpenAI functions. * @param config - The parameters required to create the runnable. * @returns A runnable sequence that will pass the given functions to the model when run. * * @example * ```typescript * const openAIFunction = { * name: "get_person_details", * description: "Get details about a person", * parameters: { * title: "Person", * description: "Identifying information about a person.", * type: "object", * properties: { * name: { title: "Name", description: "The person's name", type: "string" }, * age: { title: "Age", description: "The person's age", type: "integer" }, * fav_food: { * title: "Fav Food", * description: "The person's favorite food", * type: "string", * }, * }, * required: ["name", "age"], * }, * }; * * const model = new ChatOpenAI(); * const prompt = ChatPromptTemplate.fromMessages([ * ["human", "Human description: {description}"], * ]); * const outputParser = new JsonOutputFunctionsParser(); * * const runnable = createOpenAIFnRunnable({ * functions: [openAIFunction], * llm: model, * prompt, * enforceSingleFunctionUsage: true, // Default is true * outputParser * }); * const response = await runnable.invoke({ * description: * "My name's John Doe and I'm 30 years old. My favorite kind of food are chocolate chip cookies.", * }); * * console.log(response); * * // { name: 'John Doe', age: 30, fav_food: 'chocolate chip cookies' } * ``` */ export function createOpenAIFnRunnable(config) { const { functions, llm, prompt, enforceSingleFunctionUsage = true, outputParser = new JsonOutputFunctionsParser(), } = config; const llmKwargs = { functions, }; if (functions.length === 1 && enforceSingleFunctionUsage) { llmKwargs.function_call = { name: functions[0].name, }; } const llmWithKwargs = llm.bind(llmKwargs); return prompt.pipe(llmWithKwargs).pipe(outputParser); } function isZodSchema(schema) { return typeof schema.safeParse === "function"; } /** * @deprecated Prefer the `.withStructuredOutput` method on chat model classes. * * Create a runnable that uses an OpenAI function to get a structured output. * @param config Params required to create the runnable. * @returns A runnable sequence that will pass the given function to the model when run. * * @example * ```typescript * import { createStructuredOutputRunnable } from "langchain/chains/openai_functions"; * import { ChatOpenAI } from "@langchain/openai"; * import { ChatPromptTemplate } from "@langchain/core/prompts"; * import { JsonOutputFunctionsParser } from "langchain/output_parsers"; * * const jsonSchema = { * title: "Person", * description: "Identifying information about a person.", * type: "object", * properties: { * name: { title: "Name", description: "The person's name", type: "string" }, * age: { title: "Age", description: "The person's age", type: "integer" }, * fav_food: { * title: "Fav Food", * description: "The person's favorite food", * type: "string", * }, * }, * required: ["name", "age"], * }; * * const model = new ChatOpenAI(); * const prompt = ChatPromptTemplate.fromMessages([ * ["human", "Human description: {description}"], * ]); * * const outputParser = new JsonOutputFunctionsParser(); * * // Also works with Zod schema * const runnable = createStructuredOutputRunnable({ * outputSchema: jsonSchema, * llm: model, * prompt, * outputParser * }); * * const response = await runnable.invoke({ * description: * "My name's John Doe and I'm 30 years old. My favorite kind of food are chocolate chip cookies.", * }); * * console.log(response); * * // { name: 'John Doe', age: 30, fav_food: 'chocolate chip cookies' } * ``` */ export function createStructuredOutputRunnable(config) { const { outputSchema, llm, prompt, outputParser } = config; const jsonSchema = isZodSchema(outputSchema) ? zodToJsonSchema(outputSchema) : outputSchema; const oaiFunction = { name: "outputFormatter", description: "Output formatter. Should always be used to format your response to the user", parameters: jsonSchema, }; return createOpenAIFnRunnable({ functions: [oaiFunction], llm, prompt, enforceSingleFunctionUsage: true, outputParser, }); }