import { cosineSimilarity, euclideanDistance, innerProduct, } from "@langchain/core/utils/math"; import { VectorStoreRetriever, } from "@langchain/core/vectorstores"; /** * A retriever that uses two sets of embeddings to perform adaptive retrieval. Based * off of the "Matryoshka embeddings: faster OpenAI vector search using Adaptive Retrieval" * blog post {@link https://supabase.com/blog/matryoshka-embeddings}. * * * This class performs "Adaptive Retrieval" for searching text embeddings efficiently using the * Matryoshka Representation Learning (MRL) technique. It retrieves documents similar to a query * embedding in two steps: * * First-pass: Uses a lower dimensional sub-vector from the MRL embedding for an initial, fast, * but less accurate search. * * Second-pass: Re-ranks the top results from the first pass using the full, high-dimensional * embedding for higher accuracy. * * * This code implements MRL embeddings for efficient vector search by combining faster, * lower-dimensional initial search with accurate, high-dimensional re-ranking. */ export class MatryoshkaRetriever extends VectorStoreRetriever { constructor(fields) { super(fields); Object.defineProperty(this, "smallK", { enumerable: true, configurable: true, writable: true, value: 50 }); Object.defineProperty(this, "largeK", { enumerable: true, configurable: true, writable: true, value: 8 }); Object.defineProperty(this, "largeEmbeddingKey", { enumerable: true, configurable: true, writable: true, value: "lc_large_embedding" }); Object.defineProperty(this, "largeEmbeddingModel", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "searchType", { enumerable: true, configurable: true, writable: true, value: "cosine" }); /** * Override the default `addDocuments` method to embed the documents twice, * once using the larger embeddings model, and then again using the default * embedding model linked to the vector store. * * @param {DocumentInterface[]} documents - An array of documents to add to the vector store. * @param {AddDocumentOptions} options - An optional object containing additional options for adding documents. * @returns {Promise} A promise that resolves to an array of the document IDs that were added to the vector store. */ Object.defineProperty(this, "addDocuments", { enumerable: true, configurable: true, writable: true, value: async (documents, options) => { // Insure documents metadata does not contain the large embedding key if (documents.some((doc) => this.largeEmbeddingKey in doc.metadata)) { throw new Error(`All documents must not contain the large embedding key: ${this.largeEmbeddingKey} in their metadata.`); } const allDocPageContent = documents.map((doc) => doc.pageContent); const allDocLargeEmbeddings = await this.largeEmbeddingModel.embedDocuments(allDocPageContent); const newDocuments = documents.map((doc, idx) => ({ ...doc, metadata: { ...doc.metadata, [this.largeEmbeddingKey]: JSON.stringify(allDocLargeEmbeddings[idx]), }, })); return this.vectorStore.addDocuments(newDocuments, options); } }); this.smallK = fields.smallK ?? this.smallK; this.largeK = fields.largeK ?? this.largeK; this.largeEmbeddingKey = fields.largeEmbeddingKey ?? this.largeEmbeddingKey; this.largeEmbeddingModel = fields.largeEmbeddingModel; this.searchType = fields.searchType ?? this.searchType; } /** * Ranks documents based on their similarity to a query embedding using larger embeddings. * * This method takes a query embedding and a list of documents (smallResults) as input. Each document * in the smallResults array has previously been associated with a large embedding stored in its metadata. * Depending on the `searchType` (cosine, innerProduct, or euclidean), it calculates the similarity scores * between the query embedding and each document's large embedding. It then ranks the documents based on * these similarity scores, from the most similar to the least similar. * * The method returns a promise that resolves to an array of the top `largeK` documents, where `largeK` * is a class property defining the number of documents to return. This subset of documents is determined * by sorting the entire list of documents based on their similarity scores and then selecting the top * `largeK` documents. * * @param {number[]} embeddedQuery The embedding of the query, represented as an array of numbers. * @param {DocumentInterface[]} smallResults An array of documents, each with metadata that includes a large embedding for similarity comparison. * @returns {Promise} A promise that resolves to an array of the top `largeK` ranked documents based on their similarity to the query embedding. */ _rankByLargeEmbeddings(embeddedQuery, smallResults) { const largeEmbeddings = smallResults.map((doc) => JSON.parse(doc.metadata[this.largeEmbeddingKey])); let func; switch (this.searchType) { case "cosine": func = () => cosineSimilarity([embeddedQuery], largeEmbeddings); break; case "innerProduct": func = () => innerProduct([embeddedQuery], largeEmbeddings); break; case "euclidean": func = () => euclideanDistance([embeddedQuery], largeEmbeddings); break; default: throw new Error(`Unknown search type: ${this.searchType}`); } // Calculate the similarity scores between the query embedding and the large embeddings const [similarityScores] = func(); // Create an array of indices from 0 to N-1, where N is the number of documents let indices = Array.from({ length: smallResults.length }, (_, index) => index); indices = indices .map((v, i) => [similarityScores[i], v]) .sort(([a], [b]) => b - a) .slice(0, this.largeK) .map(([, i]) => i); return indices.map((i) => smallResults[i]); } async _getRelevantDocuments(query) { const [embeddedQuery, smallResults] = await Promise.all([ this.largeEmbeddingModel.embedQuery(query), this.vectorStore.similaritySearch(query, this.smallK, this.filter), ]); return this._rankByLargeEmbeddings(embeddedQuery, smallResults); } }