"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.GenerativeAgent = void 0; const prompts_1 = require("@langchain/core/prompts"); const llm_chain_js_1 = require("../../chains/llm_chain.cjs"); const base_js_1 = require("../../chains/base.cjs"); /** * Implementation of a generative agent that can learn and form new memories over * time. It extends the BaseChain class, which is a generic * sequence of calls to components, including other chains. * @example * ```typescript * const tommie: GenerativeAgent = new GenerativeAgent( * new OpenAI({ temperature: 0.9, maxTokens: 1500 }), * new GenerativeAgentMemory( * new ChatOpenAI(), * new TimeWeightedVectorStoreRetriever({ * vectorStore: new MemoryVectorStore(new OpenAIEmbeddings()), * otherScoreKeys: ["importance"], * k: 15, * }), * { reflectionThreshold: 8 }, * ), * { * name: "Tommie", * age: 25, * traits: "anxious, likes design, talkative", * status: "looking for a job", * }, * ); * * await tommie.addMemory( * "Tommie remembers his dog, Bruno, from when he was a kid", * new Date(), * ); * const summary = await tommie.getSummary({ forceRefresh: true }); * const response = await tommie.generateDialogueResponse( * "USER says Hello Tommie, how are you today?", * ); * ``` */ class GenerativeAgent extends base_js_1.BaseChain { static lc_name() { return "GenerativeAgent"; } // TODO: Add support for daily summaries // private dailySummaries: string[] = []; // summary of the events in the plan that the agent took. _chainType() { return "generative_agent_executor"; } get inputKeys() { return ["observation", "suffix", "now"]; } get outputKeys() { return ["output", "continue_dialogue"]; } constructor(llm, longTermMemory, config) { super(); // a character with memory and innate characterisitics Object.defineProperty(this, "name", { enumerable: true, configurable: true, writable: true, value: void 0 }); // the character's name Object.defineProperty(this, "age", { enumerable: true, configurable: true, writable: true, value: void 0 }); // the optional age of the character Object.defineProperty(this, "traits", { enumerable: true, configurable: true, writable: true, value: void 0 }); // permanent traits to ascribe to the character Object.defineProperty(this, "status", { enumerable: true, configurable: true, writable: true, value: void 0 }); // the traits of the character you wish not to change Object.defineProperty(this, "longTermMemory", { enumerable: true, configurable: true, writable: true, value: void 0 }); Object.defineProperty(this, "llm", { enumerable: true, configurable: true, writable: true, value: void 0 }); // the underlying language model Object.defineProperty(this, "verbose", { enumerable: true, configurable: true, writable: true, value: void 0 }); // false Object.defineProperty(this, "summary", { enumerable: true, configurable: true, writable: true, value: void 0 }); // stateful self-summary generated via reflection on the character's memory. Object.defineProperty(this, "summaryRefreshSeconds", { enumerable: true, configurable: true, writable: true, value: 3600 }); Object.defineProperty(this, "lastRefreshed", { enumerable: true, configurable: true, writable: true, value: void 0 }); // the last time the character's summary was regenerated this.llm = llm; this.longTermMemory = longTermMemory; this.name = config.name; this.age = config.age; this.traits = config.traits; this.status = config.status; this.verbose = config.verbose ?? this.verbose; this.summary = ""; this.summaryRefreshSeconds = config.summaryRefreshSeconds ?? this.summaryRefreshSeconds; this.lastRefreshed = new Date(); // this.dailySummaries = config.dailySummaries ?? this.dailySummaries; } // LLM methods /** * Parses a newline-separated string into a list of strings. * @param text The string to parse. * @returns An array of strings parsed from the input text. */ parseList(text) { // parse a newline-seperated string into a list of strings const lines = text.trim().split("\n"); const result = lines.map((line) => line.replace(/^\s*\d+\.\s*/, "").trim()); return result; } /** * Creates a new LLMChain with the given prompt and the agent's language * model, verbosity, output key, and memory. * @param prompt The prompt to use for the LLMChain. * @returns A new LLMChain instance. */ chain(prompt) { const chain = new llm_chain_js_1.LLMChain({ llm: this.llm, prompt, verbose: this.verbose, outputKey: "output", memory: this.longTermMemory, }); return chain; } /** * Extracts the observed entity from the given observation. * @param observation The observation to extract the entity from. * @param runManager Optional CallbackManagerForChainRun instance. * @returns The extracted entity as a string. */ async getEntityFromObservations(observation, runManager) { const prompt = prompts_1.PromptTemplate.fromTemplate("What is the observed entity in the following observation? {observation}" + "\nEntity="); const result = await this.chain(prompt).call({ observation, }, runManager?.getChild("entity_extractor")); return result.output; } /** * Extracts the action of the given entity from the given observation. * @param observation The observation to extract the action from. * @param entityName The name of the entity to extract the action for. * @param runManager Optional CallbackManagerForChainRun instance. * @returns The extracted action as a string. */ async getEntityAction(observation, entityName, runManager) { const prompt = prompts_1.PromptTemplate.fromTemplate("What is the {entity} doing in the following observation? {observation}" + "\nThe {entity} is"); const result = await this.chain(prompt).call({ entity: entityName, observation, }, runManager?.getChild("entity_action_extractor")); const trimmedResult = result.output.trim(); return trimmedResult; } /** * Summarizes memories that are most relevant to an observation. * @param observation The observation to summarize related memories for. * @param runManager Optional CallbackManagerForChainRun instance. * @returns The summarized memories as a string. */ async summarizeRelatedMemories(observation, runManager) { // summarize memories that are most relevant to an observation const prompt = prompts_1.PromptTemplate.fromTemplate(` {q1}? Context from memory: {relevant_memories} Relevant context:`); const entityName = await this.getEntityFromObservations(observation, runManager); const entityAction = await this.getEntityAction(observation, entityName, runManager); const q1 = `What is the relationship between ${this.name} and ${entityName}`; const q2 = `${entityName} is ${entityAction}`; const response = await this.chain(prompt).call({ q1, queries: [q1, q2], }, runManager?.getChild("entity_relationships")); return response.output.trim(); // added output } async _call(values, runManager) { const { observation, suffix, now } = values; // react to a given observation or dialogue act const prompt = prompts_1.PromptTemplate.fromTemplate(`{agent_summary_description}` + `\nIt is {current_time}.` + `\n{agent_name}'s status: {agent_status}` + `\nSummary of relevant context from {agent_name}'s memory:` + "\n{relevant_memories}" + `\nMost recent observations: {most_recent_memories}` + `\nObservation: {observation}` + `\n\n${suffix}`); const agentSummaryDescription = await this.getSummary({}, runManager); // now = now in param const relevantMemoriesStr = await this.summarizeRelatedMemories(observation, runManager); const currentTime = (now || new Date()).toLocaleString("en-US", { month: "long", day: "numeric", year: "numeric", hour: "numeric", minute: "numeric", hour12: true, }); const chainInputs = { agent_summary_description: agentSummaryDescription, current_time: currentTime, agent_name: this.name, observation, agent_status: this.status, most_recent_memories: "", }; chainInputs[this.longTermMemory.getRelevantMemoriesKey()] = relevantMemoriesStr; const consumedTokens = await this.llm.getNumTokens(await prompt.format({ ...chainInputs })); chainInputs[this.longTermMemory.getMostRecentMemoriesTokenKey()] = consumedTokens; const response = await this.chain(prompt).call(chainInputs, runManager?.getChild("reaction_from_summary")); const rawOutput = response.output; let output = rawOutput; let continue_dialogue = false; if (rawOutput.includes("REACT:")) { const reaction = this._cleanResponse(rawOutput.split("REACT:").pop()); await this.addMemory(`${this.name} observed ${observation} and reacted by ${reaction}`, now, {}, runManager?.getChild("memory")); output = `${reaction}`; continue_dialogue = false; } else if (rawOutput.includes("SAY:")) { const saidValue = this._cleanResponse(rawOutput.split("SAY:").pop()); await this.addMemory(`${this.name} observed ${observation} and said ${saidValue}`, now, {}, runManager?.getChild("memory")); output = `${this.name} said ${saidValue}`; continue_dialogue = true; } else if (rawOutput.includes("GOODBYE:")) { const farewell = this._cleanResponse(rawOutput.split("GOODBYE:").pop() ?? ""); await this.addMemory(`${this.name} observed ${observation} and said ${farewell}`, now, {}, runManager?.getChild("memory")); output = `${this.name} said ${farewell}`; continue_dialogue = false; } return { output, continue_dialogue }; } _cleanResponse(text) { if (text === undefined) { return ""; } const regex = new RegExp(`^${this.name} `); return text.replace(regex, "").trim(); } /** * Generates a reaction to the given observation. * @param observation The observation to generate a reaction for. * @param now Optional current date. * @returns A boolean indicating whether to continue the dialogue and the output string. */ async generateReaction(observation, now) { const callToActionTemplate = `Should {agent_name} react to the observation, and if so,` + ` what would be an appropriate reaction? Respond in one line.` + ` If the action is to engage in dialogue, write:\nSAY: "what to say"` + ` \notherwise, write:\nREACT: {agent_name}'s reaction (if anything).` + ` \nEither do nothing, react, or say something but not both.\n\n`; const { output, continue_dialogue } = await this.call({ observation, suffix: callToActionTemplate, now, }); return [continue_dialogue, output]; } /** * Generates a dialogue response to the given observation. * @param observation The observation to generate a dialogue response for. * @param now Optional current date. * @returns A boolean indicating whether to continue the dialogue and the output string. */ async generateDialogueResponse(observation, now) { const callToActionTemplate = `What would ${this.name} say? To end the conversation, write: GOODBYE: "what to say". Otherwise to continue the conversation, write: SAY: "what to say next"\n\n`; const { output, continue_dialogue } = await this.call({ observation, suffix: callToActionTemplate, now, }); return [continue_dialogue, output]; } // Agent stateful' summary methods // Each dialog or response prompt includes a header // summarizing the agent's self-description. This is // updated periodically through probing it's memories /** * Gets the agent's summary, which includes the agent's name, age, traits, * and a summary of the agent's core characteristics. The summary is * updated periodically through probing the agent's memories. * @param config Optional configuration object with current date and a boolean to force refresh. * @param runManager Optional CallbackManagerForChainRun instance. * @returns The agent's summary as a string. */ async getSummary(config, runManager) { const { now = new Date(), forceRefresh = false } = config ?? {}; const sinceRefresh = Math.floor((now.getTime() - this.lastRefreshed.getTime()) / 1000); if (!this.summary || sinceRefresh >= this.summaryRefreshSeconds || forceRefresh) { this.summary = await this.computeAgentSummary(runManager); this.lastRefreshed = now; } let age; if (this.age) { age = this.age; } else { age = "N/A"; } return `Name: ${this.name} (age: ${age}) Innate traits: ${this.traits} ${this.summary}`; } /** * Computes the agent's summary by summarizing the agent's core * characteristics given the agent's relevant memories. * @param runManager Optional CallbackManagerForChainRun instance. * @returns The computed summary as a string. */ async computeAgentSummary(runManager) { const prompt = prompts_1.PromptTemplate.fromTemplate("How would you summarize {name}'s core characteristics given the following statements:\n" + "----------" + "{relevant_memories}" + "----------" + "Do not embellish." + "\n\nSummary: "); // the agent seeks to think about their core characterisitics const result = await this.chain(prompt).call({ name: this.name, queries: [`${this.name}'s core characteristics`], }, runManager?.getChild("compute_agent_summary")); return result.output.trim(); } /** * Returns a full header of the agent's status, summary, and current time. * @param config Optional configuration object with current date and a boolean to force refresh. * @returns The full header as a string. */ getFullHeader(config = {}) { const { now = new Date(), forceRefresh = false } = config; // return a full header of the agent's status, summary, and current time. const summary = this.getSummary({ now, forceRefresh }); const currentTimeString = now.toLocaleString("en-US", { month: "long", day: "numeric", year: "numeric", hour: "numeric", minute: "numeric", hour12: true, }); return `${summary}\nIt is ${currentTimeString}.\n${this.name}'s status: ${this.status}`; } /** * Adds a memory to the agent's long-term memory. * @param memoryContent The content of the memory to add. * @param now Optional current date. * @param metadata Optional metadata for the memory. * @param callbacks Optional Callbacks instance. * @returns The result of adding the memory to the agent's long-term memory. */ async addMemory(memoryContent, now, metadata, callbacks) { return this.longTermMemory.addMemory(memoryContent, now, metadata, callbacks); } } exports.GenerativeAgent = GenerativeAgent;