import { defaultProvider, } from "@aws-sdk/credential-provider-node"; import { BedrockChat as BaseBedrockChat } from "./web.js"; /** * AWS Bedrock chat model integration. * * Setup: * Install `@langchain/community` and set the following environment variables: * * ```bash * npm install @langchain/openai * export AWS_REGION="your-aws-region" * export AWS_SECRET_ACCESS_KEY="your-aws-secret-access-key" * export AWS_ACCESS_KEY_ID="your-aws-access-key-id" * ``` * * ## [Constructor args](/classes/langchain_community_chat_models_bedrock.BedrockChat.html#constructor) * * ## [Runtime args](/interfaces/langchain_community_chat_models_bedrock_web.BedrockChatCallOptions.html) * * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc. * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below: * * ```typescript * // When calling `.bind`, call options should be passed via the first argument * const llmWithArgsBound = llm.bind({ * stop: ["\n"], * tools: [...], * }); * * // When calling `.bindTools`, call options should be passed via the second argument * const llmWithTools = llm.bindTools( * [...], * { * stop: ["stop on this token!"], * } * ); * ``` * * ## Examples * *
* Instantiate * * ```typescript * import { BedrockChat } from '@langchain/community/chat_models/bedrock'; * * const llm = new BedrockChat({ * region: process.env.BEDROCK_AWS_REGION, * maxRetries: 0, * model: "anthropic.claude-3-5-sonnet-20240620-v1:0", * temperature: 0, * maxTokens: undefined, * // other params... * }); * * // You can also pass credentials in explicitly: * const llmWithCredentials = new BedrockChat({ * region: process.env.BEDROCK_AWS_REGION, * model: "anthropic.claude-3-5-sonnet-20240620-v1:0", * credentials: { * secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY!, * accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID!, * }, * }); * ``` *
* *
* *
* Invoking * * ```typescript * const messages = [ * { * type: "system" as const, * content: "You are a helpful translator. Translate the user sentence to French.", * }, * { * type: "human" as const, * content: "I love programming.", * }, * ]; * const result = await llm.invoke(messages); * console.log(result); * ``` * * ```txt * AIMessage { * "content": "Here's the translation to French:\n\nJ'adore la programmation.", * "additional_kwargs": { * "id": "msg_bdrk_01HCZHa2mKbMZeTeHjLDd286" * }, * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": "end_turn", * "stop_sequence": null, * "usage": { * "input_tokens": 25, * "output_tokens": 19 * } * }, * "tool_calls": [], * "invalid_tool_calls": [] * } * ``` *
* *
* *
* Streaming Chunks * * ```typescript * for await (const chunk of await llm.stream(messages)) { * console.log(chunk); * } * ``` * * ```txt * AIMessageChunk { * "content": "", * "additional_kwargs": { * "id": "msg_bdrk_01RhFuGR9uJ2bj5GbdAma4y6" * }, * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": null, * "stop_sequence": null * }, * } * AIMessageChunk { * "content": "J", * } * AIMessageChunk { * "content": "'adore la", * } * AIMessageChunk { * "content": " programmation.", * } * AIMessageChunk { * "content": "", * "additional_kwargs": { * "stop_reason": "end_turn", * "stop_sequence": null * }, * } * AIMessageChunk { * "content": "", * "response_metadata": { * "amazon-bedrock-invocationMetrics": { * "inputTokenCount": 25, * "outputTokenCount": 11, * "invocationLatency": 659, * "firstByteLatency": 506 * } * }, * "usage_metadata": { * "input_tokens": 25, * "output_tokens": 11, * "total_tokens": 36 * } * } * ``` *
* *
* *
* Aggregate Streamed Chunks * * ```typescript * import { AIMessageChunk } from '@langchain/core/messages'; * import { concat } from '@langchain/core/utils/stream'; * * const stream = await llm.stream(messages); * let full: AIMessageChunk | undefined; * for await (const chunk of stream) { * full = !full ? chunk : concat(full, chunk); * } * console.log(full); * ``` * * ```txt * AIMessageChunk { * "content": "J'adore la programmation.", * "additional_kwargs": { * "id": "msg_bdrk_017b6PuBybA51P5LZ9K6gZHm", * "stop_reason": "end_turn", * "stop_sequence": null * }, * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": null, * "stop_sequence": null, * "amazon-bedrock-invocationMetrics": { * "inputTokenCount": 25, * "outputTokenCount": 11, * "invocationLatency": 1181, * "firstByteLatency": 1177 * } * }, * "usage_metadata": { * "input_tokens": 25, * "output_tokens": 11, * "total_tokens": 36 * } * } * ``` *
* *
* *
* Bind tools * * ```typescript * import { z } from 'zod'; * import { AIMessage } from '@langchain/core/messages'; * * const GetWeather = { * name: "GetWeather", * description: "Get the current weather in a given location", * schema: z.object({ * location: z.string().describe("The city and state, e.g. San Francisco, CA") * }), * } * * const GetPopulation = { * name: "GetPopulation", * description: "Get the current population in a given location", * schema: z.object({ * location: z.string().describe("The city and state, e.g. San Francisco, CA") * }), * } * * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]); * const aiMsg: AIMessage = await llmWithTools.invoke( * "Which city is hotter today and which is bigger: LA or NY?" * ); * console.log(aiMsg.tool_calls); * ``` * * ```txt * [ * { * name: 'GetWeather', * args: { location: 'Los Angeles, CA' }, * id: 'toolu_bdrk_01R2daqwHR931r4baVNzbe38', * type: 'tool_call' * }, * { * name: 'GetWeather', * args: { location: 'New York, NY' }, * id: 'toolu_bdrk_01WDadwNc7PGqVZvCN7Dr7eD', * type: 'tool_call' * }, * { * name: 'GetPopulation', * args: { location: 'Los Angeles, CA' }, * id: 'toolu_bdrk_014b8zLkpAgpxrPfewKinJFc', * type: 'tool_call' * }, * { * name: 'GetPopulation', * args: { location: 'New York, NY' }, * id: 'toolu_bdrk_01Tt8K2MUP15kNuMDFCLEFKN', * type: 'tool_call' * } * ] * ``` *
* *
* *
* Structured Output * * ```typescript * const Joke = z.object({ * setup: z.string().describe("The setup of the joke"), * punchline: z.string().describe("The punchline to the joke"), * rating: z.number().optional().describe("How funny the joke is, from 1 to 10") * }).describe('Joke to tell user.'); * * const structuredLlm = llm.withStructuredOutput(Joke); * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats"); * console.log(jokeResult); * ``` * * ```txt * { * setup: "Why don't cats play poker in the jungle?", * punchline: 'Too many cheetahs!' * } * ``` *
* *
* *
* Response Metadata * * ```typescript * const aiMsgForResponseMetadata = await llm.invoke(messages); * console.log(aiMsgForResponseMetadata.response_metadata); * ``` * * ```txt * "response_metadata": { * "type": "message", * "role": "assistant", * "model": "claude-3-5-sonnet-20240620", * "stop_reason": "end_turn", * "stop_sequence": null, * "usage": { * "input_tokens": 25, * "output_tokens": 19 * } * } * ``` *
*/ export class BedrockChat extends BaseBedrockChat { static lc_name() { return "BedrockChat"; } constructor(fields) { const { profile, filepath, configFilepath, ignoreCache, mfaCodeProvider, roleAssumer, roleArn, webIdentityTokenFile, roleAssumerWithWebIdentity, ...rest } = fields ?? {}; super({ ...rest, credentials: rest?.credentials ?? defaultProvider({ profile, filepath, configFilepath, ignoreCache, mfaCodeProvider, roleAssumer, roleArn, webIdentityTokenFile, roleAssumerWithWebIdentity, }), }); } } export { convertMessagesToPromptAnthropic, convertMessagesToPrompt, } from "./web.js"; /** * @deprecated Use `BedrockChat` instead. */ export const ChatBedrock = BedrockChat;