import { Embeddings, type EmbeddingsParams } from "@langchain/core/embeddings"; export interface AlibabaTongyiEmbeddingsParams extends EmbeddingsParams { /** Model name to use */ modelName: "text-embedding-v2"; /** * Timeout to use when making requests to AlibabaTongyi. */ timeout?: number; /** * The maximum number of documents to embed in a single request. This is * limited by the AlibabaTongyi API to a maximum of 2048. */ batchSize?: number; /** * Whether to strip new lines from the input text. */ stripNewLines?: boolean; parameters?: { /** * 取值:query 或者 document,默认值为 document * 说明:文本转换为向量后可以应用于检索、聚类、分类等下游任务, * 对检索这类非对称任务为了达到更好的检索效果建议区分查询文本(query)和 * 底库文本(document)类型, 聚类、分类等对称任务可以不用特殊指定, * 采用系统默认值"document"即可 */ text_type?: "query" | "document"; }; } interface EmbeddingCreateParams { model: AlibabaTongyiEmbeddingsParams["modelName"]; input: { texts: string[]; }; parameters?: AlibabaTongyiEmbeddingsParams["parameters"]; } export declare class AlibabaTongyiEmbeddings extends Embeddings implements AlibabaTongyiEmbeddingsParams { modelName: AlibabaTongyiEmbeddingsParams["modelName"]; batchSize: number; stripNewLines: boolean; apiKey: string; parameters: EmbeddingCreateParams["parameters"]; constructor(fields?: Partial & { verbose?: boolean; apiKey?: string; }); /** * Method to generate embeddings for an array of documents. Splits the * documents into batches and makes requests to the AlibabaTongyi API to generate * embeddings. * @param texts Array of documents to generate embeddings for. * @returns Promise that resolves to a 2D array of embeddings for each document. */ embedDocuments(texts: string[]): Promise; /** * Method to generate an embedding for a single document. Calls the * embeddingWithRetry method with the document as the input. * @param text Document to generate an embedding for. * @returns Promise that resolves to an embedding for the document. */ embedQuery(text: string): Promise; /** * Method to generate an embedding params. * @param texts Array of documents to generate embeddings for. * @returns an embedding params. */ private getParams; /** * Private method to make a request to the OpenAI API to generate * embeddings. Handles the retry logic and returns the response from the * API. * @param request Request to send to the OpenAI API. * @returns Promise that resolves to the response from the API. */ private embeddingWithRetry; } export {};