import type { BaseLanguageModelInterface, BaseFunctionCallOptions } from "@langchain/core/language_models/base"; import type { StructuredToolInterface } from "@langchain/core/tools"; import type { BaseChatModel } from "@langchain/core/language_models/chat_models"; import type { AgentAction, AgentFinish, AgentStep } from "@langchain/core/agents"; import { BaseMessage, SystemMessage } from "@langchain/core/messages"; import { ChainValues } from "@langchain/core/utils/types"; import { ChatPromptTemplate, BasePromptTemplate } from "@langchain/core/prompts"; import { CallbackManager } from "@langchain/core/callbacks/manager"; import { Agent, AgentArgs, AgentRunnableSequence } from "../agent.js"; import { AgentInput } from "../types.js"; import { OpenAIFunctionsAgentOutputParser } from "../openai/output_parser.js"; export declare function _formatIntermediateSteps(intermediateSteps: AgentStep[]): BaseMessage[]; /** * Interface for the input data required to create an OpenAIAgent. */ export interface OpenAIAgentInput extends AgentInput { tools: StructuredToolInterface[]; } /** * Interface for the arguments required to create a prompt for an * OpenAIAgent. */ export interface OpenAIAgentCreatePromptArgs { prefix?: string; systemMessage?: SystemMessage; } /** * Class representing an agent for the OpenAI chat model in LangChain. It * extends the Agent class and provides additional functionality specific * to the OpenAIAgent type. * * @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createOpenAIFunctionsAgent.html | createOpenAIFunctionsAgent method instead}. */ export declare class OpenAIAgent extends Agent { static lc_name(): string; lc_namespace: string[]; _agentType(): "openai-functions"; observationPrefix(): string; llmPrefix(): string; _stop(): string[]; tools: StructuredToolInterface[]; outputParser: OpenAIFunctionsAgentOutputParser; constructor(input: Omit); /** * Creates a prompt for the OpenAIAgent using the provided tools and * fields. * @param _tools The tools to be used in the prompt. * @param fields Optional fields for creating the prompt. * @returns A BasePromptTemplate object representing the created prompt. */ static createPrompt(_tools: StructuredToolInterface[], fields?: OpenAIAgentCreatePromptArgs): BasePromptTemplate; /** * Creates an OpenAIAgent from a BaseLanguageModel and a list of tools. * @param llm The BaseLanguageModel to use. * @param tools The tools to be used by the agent. * @param args Optional arguments for creating the agent. * @returns An instance of OpenAIAgent. */ static fromLLMAndTools(llm: BaseLanguageModelInterface, tools: StructuredToolInterface[], args?: OpenAIAgentCreatePromptArgs & Pick): OpenAIAgent; /** * Constructs a scratch pad from a list of agent steps. * @param steps The steps to include in the scratch pad. * @returns A string or a list of BaseMessages representing the constructed scratch pad. */ constructScratchPad(steps: AgentStep[]): Promise; /** * Plans the next action or finish state of the agent based on the * provided steps, inputs, and optional callback manager. * @param steps The steps to consider in planning. * @param inputs The inputs to consider in planning. * @param callbackManager Optional CallbackManager to use in planning. * @returns A Promise that resolves to an AgentAction or AgentFinish object representing the planned action or finish state. */ plan(steps: Array, inputs: ChainValues, callbackManager?: CallbackManager): Promise; } /** * Params used by the createOpenAIFunctionsAgent function. */ export type CreateOpenAIFunctionsAgentParams = { /** * LLM to use as the agent. Should work with OpenAI function calling, * so must either be an OpenAI model that supports that or a wrapper of * a different model that adds in equivalent support. */ llm: BaseChatModel; /** Tools this agent has access to. */ tools: StructuredToolInterface[]; /** The prompt to use, must have an input key for `agent_scratchpad`. */ prompt: ChatPromptTemplate; /** * Whether to invoke the underlying model in streaming mode, * allowing streaming of intermediate steps. Defaults to true. */ streamRunnable?: boolean; }; /** * Create an agent that uses OpenAI-style function calling. * @param params Params required to create the agent. Includes an LLM, tools, and prompt. * @returns A runnable sequence representing an agent. It takes as input all the same input * variables as the prompt passed in does. It returns as output either an * AgentAction or AgentFinish. * * @example * ```typescript * import { AgentExecutor, createOpenAIFunctionsAgent } from "langchain/agents"; * import { pull } from "langchain/hub"; * import type { ChatPromptTemplate } from "@langchain/core/prompts"; * import { AIMessage, HumanMessage } from "@langchain/core/messages"; * * import { ChatOpenAI } from "@langchain/openai"; * * // Define the tools the agent will have access to. * const tools = [...]; * * // Get the prompt to use - you can modify this! * // If you want to see the prompt in full, you can at: * // https://smith.langchain.com/hub/hwchase17/openai-functions-agent * const prompt = await pull( * "hwchase17/openai-functions-agent" * ); * * const llm = new ChatOpenAI({ * temperature: 0, * }); * * const agent = await createOpenAIFunctionsAgent({ * llm, * tools, * prompt, * }); * * const agentExecutor = new AgentExecutor({ * agent, * tools, * }); * * const result = await agentExecutor.invoke({ * input: "what is LangChain?", * }); * * // With chat history * const result2 = await agentExecutor.invoke({ * input: "what's my name?", * chat_history: [ * new HumanMessage("hi! my name is cob"), * new AIMessage("Hello Cob! How can I assist you today?"), * ], * }); * ``` */ export declare function createOpenAIFunctionsAgent({ llm, tools, prompt, streamRunnable, }: CreateOpenAIFunctionsAgentParams): Promise>;