import { RunnablePassthrough } from "@langchain/core/runnables"; import { AgentRunnableSequence } from "../agent.js"; import { ToolCallingAgentOutputParser, } from "./output_parser.js"; import { formatToToolMessages } from "../format_scratchpad/tool_calling.js"; function _isBaseChatModel(x) { const model = x; return (typeof model._modelType === "function" && model._modelType() === "base_chat_model"); } /** * Create an agent that uses tools. * @param params Params required to create the agent. Includes an LLM, tools, and prompt. * @returns A runnable sequence representing an agent. It takes as input all the same input * variables as the prompt passed in does. It returns as output either an * AgentAction or AgentFinish. * @example * ```typescript * import { ChatAnthropic } from "@langchain/anthropic"; * import { ChatPromptTemplate, MessagesPlaceholder } from "@langchain/core/prompts"; * import { AgentExecutor, createToolCallingAgent } from "langchain/agents"; * * const prompt = ChatPromptTemplate.fromMessages( * [ * ["system", "You are a helpful assistant"], * ["placeholder", "{chat_history}"], * ["human", "{input}"], * ["placeholder", "{agent_scratchpad}"], * ] * ); * * * const llm = new ChatAnthropic({ * modelName: "claude-3-opus-20240229", * temperature: 0, * }); * * // Define the tools the agent will have access to. * const tools = [...]; * * const agent = createToolCallingAgent({ llm, tools, prompt }); * * const agentExecutor = new AgentExecutor({ agent, tools }); * * const result = await agentExecutor.invoke({input: "what is LangChain?"}); * * // Using with chat history * import { AIMessage, HumanMessage } from "@langchain/core/messages"; * * const result2 = await agentExecutor.invoke( * { * input: "what's my name?", * chat_history: [ * new HumanMessage({content: "hi! my name is bob"}), * new AIMessage({content: "Hello Bob! How can I assist you today?"}), * ], * } * ); * ``` */ export function createToolCallingAgent({ llm, tools, prompt, streamRunnable, }) { if (!prompt.inputVariables.includes("agent_scratchpad")) { throw new Error([ `Prompt must have an input variable named "agent_scratchpad".`, `Found ${JSON.stringify(prompt.inputVariables)} instead.`, ].join("\n")); } let modelWithTools; if (_isBaseChatModel(llm)) { if (llm.bindTools === undefined) { throw new Error(`This agent requires that the "bind_tools()" method be implemented on the input model.`); } modelWithTools = llm.bindTools(tools); } else { modelWithTools = llm; } const agent = AgentRunnableSequence.fromRunnables([ RunnablePassthrough.assign({ agent_scratchpad: (input) => formatToToolMessages(input.steps), }), prompt, modelWithTools, new ToolCallingAgentOutputParser(), ], { name: "ToolCallingAgent", streamRunnable, singleAction: false, }); return agent; }